1. Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol 2017;12:2032–2045.
5. Johansen KL, Chertow GM, Foley RN, et al. US Renal Data System 2020 Annual Data Report: epidemiology of kidney disease in the United States. Am J Kidney Dis 2021;77(4 Suppl 1):A7–A8.
8. Stevens PE, Levin A, Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med 2013;158:825–830.
9. Fiorentino M, Bolignano D, Tesar V, et al. Renal biopsy in patients with diabetes: a pooled meta-analysis of 48 studies. Nephrol Dial Transplant 2017;32:97–110.
11. Jawa A, Kcomt J, Fonseca VA. Diabetic nephropathy and retinopathy. Med Clin North Am 2004;88:1001–36xi.
12. Umanath K, Lewis JB. Update on diabetic nephropathy: core curriculum 2018. Am J Kidney Dis 2018;71:884–895.
13. Jiang G, Luk AOY, Tam CHT, et al. Progression of diabetic kidney disease and trajectory of kidney function decline in Chinese patients with Type 2 diabetes. Kidney Int 2019;95:178–187.
15. Jang C, Chen L, Rabinowitz JD. Metabolomics and isotope tracing. Cell 2018;173:822–837.
16. Dumas ME. Metabolome 2.0: quantitative genetics and network biology of metabolic phenotypes. Mol Biosyst 2012;8:2494–2502.
17. Breit M, Weinberger KM. Metabolic biomarkers for chronic kidney disease. Arch Biochem Biophys 2016;589:62–80.
25. Xia JF, Liang QL, Hu P, Wang YM, Li P, Luo GA. Correlations of six related purine metabolites and diabetic nephropathy in Chinese type 2 diabetic patients. Clin Biochem 2009;42:215–220.
26. Jiang Z, Liang Q, Luo G, Hu P, Li P, Wang Y. HPLC-electrospray tandem mass spectrometry for simultaneous quantitation of eight plasma aminothiols: application to studies of diabetic nephropathy. Talanta 2009;77:1279–1284.
27. Han LD, Xia JF, Liang QL, et al. Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography-mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Anal Chim Acta 2011;689:85–91.
28. Pena MJ, Lambers Heerspink HJ, Hellemons ME, et al. Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with Type 2 diabetes mellitus. Diabet Med 2014;31:1138–1147.
29. Kim DW, Kim HJ, Seong EY, et al. Virtual diagnosis of diabetic nephropathy using metabolomics in place of kidney biopsy: the DIAMOND study. Diabetes Res Clin Pract 2023;205:110986.
39. Wang Z, Zhang J, Wang L, et al. Glycine mitigates renal oxidative stress by suppressing Nox4 expression in rats with streptozotocin-induced diabetes. J Pharmacol Sci 2018;137:387–394.
40. Yuan Y, Huang L, Yu L, et al. Clinical metabolomics characteristics of diabetic kidney disease: a meta-analysis of 1875 cases with diabetic kidney disease and 4503 controls. Diabetes Metab Res Rev 2024;40:e3789.
41. Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology 2021;128:1580–1591.
47. KP , Kumar J A, Rai S, et al. Predictive value of serum sialic Acid in type-2 diabetes mellitus and its complication (nephropathy). J Clin Diagn Res 2013;7:2435–2437.
48. El-Sayed MS, El Badawy A, Abdelmoneim RO, Mansour AE, Khalil ME, Darwish K. Relationship between serum sialic acid concentration and diabetic retinopathy in Egyptian patients with type 2 diabetes mellitus. Benha Med J 2018;35:257–263.