3. Jones TJ, Nauli SM. Mechanosensory calcium signaling. Adv Exp Med Biol 2012;740:1001–1015.
4. Torres VE, Harris PC. Mechanisms of disease: autosomal dominant and recessive polycystic kidney diseases. Nat Clin Pract Nephrol 2006;2:40–55quiz 55.
11. Torres VE, Chapman AB, Devuyst O, et al. Tolvaptan in later-stage autosomal dominant polycystic kidney disease. N Engl J Med 2017;377:1930–1942.
14. Harris PC, Bae KT, Rossetti S, et al. Cyst number but not the rate of cystic growth is associated with the mutated gene in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 2006;17:3013–3019.
18. Reddy B, Chapman AB. Acute response to tolvaptan in ADPKD: a window to predict long-term efficacy? Am J Kidney Dis 2015;65:811–813.
22. Xie X, Cai Q, Guo XY, et al. Effectiveness of tolvaptan in the treatment for patients with autosomal dominant polycystic kidney disease: a meta-analysis. Comb Chem High Throughput Screen 2020;23:6–16.
26. Bajwa ZH, Gupta S, Warfield CA, Steinman TI. Pain management in polycystic kidney disease. Kidney Int 2001;60:1631–1644.
28. Torres VE, Wilson DM, Hattery RR, Segura JW. Renal stone disease in autosomal dominant polycystic kidney disease. Am J Kidney Dis 1993;22:513–519.
35. Kramers BJ, Koorevaar IW, Drenth JPH, et al. Salt, but not protein intake, is associated with accelerated disease progression in autosomal dominant polycystic kidney disease. Kidney Int 2020;98:989–998.
36. Kramers BJ, van Gastel MDA, Boertien WE, Meijer E, Gansevoort RT. Determinants of urine volume in ADPKD patients using the vasopressin V2 receptor antagonist tolvaptan. Am J Kidney Dis 2019;73:354–362.
40. Shoaf SE, Bramer SL, Bricmont P, Zimmer CA. Pharmacokinetic and pharmacodynamic interaction between tolvaptan, a non-peptide AVP antagonist, and furosemide or hydrochlorothiazide. J Cardiovasc Pharmacol 2007;50:213–222.
44. Müller RU, Messchendorp AL, Birn H, et al. An update on the use of tolvaptan for autosomal dominant polycystic kidney disease: consensus statement on behalf of the ERA Working Group on Inherited Kidney Disorders, the European Rare Kidney Disease Reference Network and Polycystic Kidney Disease International. Nephrol Dial Transplant 2022;37:825–839.
51. Ong AC, Ashley C, Harris T, et al. Commentary on the NICE Guideline on Tolvaptan for treating autosomal dominant polycystic kidney disease [Internet]. Bristol (UK): UK Kidney Association; c2016 [cited 2022 Dec 1]. Available from: https://ukkidney.org/health-professionals/guidelines/commentary-nice-guideline-tolvaptan-treating-autosomal-dominant.
54. Alpers DH, Lewis JH, Hunt CM, et al. Clinical pattern of tolvaptan-associated liver injury in trial participants with autosomal dominant polycystic kidney disease (ADPKD): an analysis of pivotal clinical trials. Am J Kidney Dis 2023;81:281–293.e.
59. Yamaguchi T, Nagao S, Kasahara M, Takahashi H, Grantham JJ. Renal accumulation and excretion of cyclic adenosine monophosphate in a murine model of slowly progressive polycystic kidney disease. Am J Kidney Dis 1997;30:703–709.
60. Yamamura Y, Ogawa H, Chihara T, et al. OPC-21268, an orally effective, nonpeptide vasopressin V1 receptor antagonist. Science 1991;252:572–574.
61. Gattone VH 2nd, Maser RL, Tian C, Rosenberg JM, Branden MG. Developmental expression of urine concentration-associated genes and their altered expression in murine infantile-type polycystic kidney disease. Dev Genet 1999;24:309–318.
63. Higashihara E, Torres VE, Chapman AB, et al. Tolvaptan in autosomal dominant polycystic kidney disease: three years’ experience. Clin J Am Soc Nephrol 2011;6:2499–2507.