INTRODUCTION
Metabolic syndrome consists of a group of cardiovascular risk factors, namely dyslipidemia, high blood pressure (BP), abdominal obesity, and insulin intolerance, whose concurrent appearance increases the risk of atherosclerotic cardiovascular disease [
1]. Using the modified National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III [ATP III]) criteria, the prevalence of atherosclerotic cardiovascular disease is estimated to be as high as 24.8% in Korea and is continuing to rapidly increase to epidemic proportions [
2]. Elevated cholesterol levels have also been shown to be a strong risk factor for the development of coronary heart disease (CHD). This clustering of risk factors may interact synergistically to affect atherosclerosis and cardiovascular events [
3]. Current guidelines for lipid management stress the importance of low-density lipoprotein cholesterol (LDL-C) levels as the primary goal of therapy [
4]; however, a high proportion of patients, especially those having high lipid levels, do not achieve their target LDL-C levels despite lipid-lowering therapy [
5,
6].
Statins effectively lower blood cholesterol levels and reduce the risk of cardiovascular events in many patient types, and are therefore recommended as first-line agents for lowering LDL-C levels [
4,
7]. Statins also improve other aspects of the lipid profile, such as increasing high-density lipoprotein cholesterol (HDL-C) and lowering triglyceride levels to some extent.
Rosuvastatin is a highly effective HMG-CoA reductase inhibitor, which was registered in 2002 in Korea. Rosuvastatin use has been previously shown in numerous studies to be associated with greater LDL-C level reductions as compared to atorvastatin, simvastatin, or pravastatin use [
8-
10]. The primary objective of the current trial was to compare the effects of rosuvastatin 10 mg with that of atorvastatin 10 mg, which are the lowest-dose tablets available, on the percentage of patients who reach the NCEP ATP III LDL-C goal and safety in subjects with nondiabetic metabolic syndrome after 6 weeks of treatment. The secondary objective was to compare the effects of rosuvastatin with that of atorvastatin on glucose control and insulin resistance.
METHODS
Study design
This 6-week, multicenter, randomized, open-label, parallel-group, single-dose trial (NCT00335699) was designed to compare the efficacy of a single dose of rosuvastatin and atorvastatin in patients having nondiabetic metabolic syndrome with dyslipidemia (
Fig. 1). The study was conducted from August 2005 to January 2006 at 20 medical centers in Korea. The study included a 6-week dietary run-in period before randomization, followed by a 6-week treatment phase. Subjects entering the run-in period were asked to follow the NCEP Step I diet and required to discontinue any previous lipid lowering therapy. Following the dietary lead-in period, patients with fasting LDL-C levels ≥ 130 mg/dL to < 220 mg/dL were selected and randomly assigned to two parallel treatment groups. At baseline, eligible subjects were randomized 1 : 1 to receive either rosuvastatin (Astra-Zeneca Korea, Seoul, Korea) 10 mg or atorvastatin (Pfizer Pharmaceuticals Korea, Seoul, Korea) 10 mg once daily at bedtime for 6 weeks. The study drug was discontinued and subjects were removed from the study if they withdrew informed consent, became pregnant, or developed creatine kinase levels greater than 10 times the upper normal limit.
The ethics committees and institutional review boards at each participating hospital approved the study protocol. All patients provided informed consent to participate in this study.
Subjects
Patients were ≥ 18 years of age and had nondiabetic metabolic syndrome. Metabolic syndrome was defined according to the modified NCEP ATP III criteria [
11], which requires at least three of the following: abdominal obesity (waist circumference): men > 90 cm (36 inches), women > 80 cm (32 inches); triglyceride levels ≥ 150 mg/dL (1.70 mmol/L); HDL-C levels: men < 40 mg/dL (1.04 mmol/L) and women < 50 mg/dL (1.3 mmol/L); BP ≥ 130 / ≥ 85 mmHg or subject receiving antihypertensive treatment; and fasting blood glucose 110 mg/dL (6.11 mmol/L) to 125 mg/dL (6.94 mmol/L). Patients were excluded if they were pregnant or had malignancy. Additional exclusion criteria included diabetes, and active arterial disease such as unstable angina, myocardial infarction, cerebrovascular accident, coronary artery bypass surgery, or angioplasty within 2 months prior to enrollment. After completing the 6-week dietary run-in period, fasting LDL-C concentrations were required to be ≥ 130 mg/dL (3.36 mmol/L) to < 220 mg/dL (5.69 mmol/L) and fasting triglyceride levels were required to be < 400 mg/dL (4.52 mmol/L).
Assessments
Sample analysis for efficacy endpoints was performed in the Green Cross Reference Laboratory, Yongin, Korea, which was certified by the American College of Pathology (LAP No. 6708401) and the National Committee for Clinical Laboratory Standards. Blood samples from patients who had fasted for 12 hours were collected at all investigational sites and delivered by courier to the central laboratory within 24 hours of blood draw. To assess the primary efficacy endpoint, lipid parameters such as total cholesterol, LDL-C, HDL-C, and triglyceride levels were measured during the dietary lead-in period, at randomization, and 6 weeks after treatment. Additionally, levels of apolipoprotein A-1 and B, high-sensitivity C-reactive protein (hsCRP), insulin, glucose, and hemoglobin A1c (HbA1c) were measured at randomization and at 6 weeks after treatment. LDL-C levels were calculated using the Friedewald equation (LDL-C = total cholesterol - (HDL-C + triglyceride/5). The insulin resistance index was estimated using the homeostasis model assessment (HOMA) for insulin resistance based on the following formula: fasting serum insulin (µU/mL) × fasting plasma glucose (mmol/L)/22.5. According to the NCEP ATP III guidelines, the goal LDL-C level for each patient and the proportion of patients achieving the goal in each group was assessed. Persons with CHD or CHD risk equivalent (Framingham 10-year CHD risk > 20%) had a LDL-C level goal of < 100 mg/dL. Those with multiple risk factors had a LDL cholesterol level goal of < 130 mg/dL and those with 0 - 1 risk factor (s) had a goal LDL cholesterol of < 160 mg/dL.
Individual demographic data, physical findings, vital signs, and adverse events were evaluated and recorded in the given case record form. To evaluate adverse events, various laboratory assessments including blood counts, and hemoglobin, aspartate aminotransferase, alanine aminotransferase, creatine kinase, electrolyte, and creatinine levels were performed at each time point.
Statistical analysis
One-hundred and forty-three evaluable subjects per treatment group were required to achieve 95% power for detecting a clinically significant difference of 6% at the 5% two-sided level in percentage change from baseline in LDL-C levels at 6 weeks with an assumed standard deviation of 14% [
12]. Assuming a dropout rate of 20% during the randomized treatment period, approximately 180 subjects were recruited to each active treatment group. To obtain the required number of randomized subjects (360 in total), approximately 900 subjects were assumed to be needed for screening based on a screening failure rate of 60%.
The primary analysis population was the last observation carried forward on the intention-to-treat population. This included all subjects with a baseline and at least one post-baseline lipid level measurement. All numeric variables were expressed as the mean ± SEM (standard error of the mean). Efficacy endpoints were analyzed using the unpaired t-test for continuous variables and Pearson's chi-square test for frequencies with 95% confidence intervals. Multivariate logistic regression analysis was used to evaluate the predictors for reaching target NCEP ATP III LDL-C levels after treatment. Variables used for analysis included the statin used, presence of coronary artery disease and hypertension, body mass index, gender, age, waist circumference, and lipid parameters.
On the basis of the actual treatment received, safety data were evaluated for all patients who received at least one dose of study medication.
DISCUSSION
This study evaluated the comparative efficacy of the lowest doses available for two effective statins, rosuvastatin and atorvastatin, in Korean patients with nondiabetic metabolic syndrome.
Rosuvastatin 10 mg was more effective than atorvastatin 10 mg in reducing LDL-C levels in subjects with nondiabetic metabolic syndrome after 6 weeks of treatment. Consistent with the greater reductions in LDL-C levels, more patients in the rosuvastatin group achieved LDL-C level goals as compared to the atorvastatin group. Otherwise, no significant difference was observed in glucose levels and insulin resistance.
Metabolic syndrome, especially in the presence of high LDL-C levels, is already known to increase the risk of cardiovascular mortality and morbidity [
13]. Statins are effective in decreasing LDL-C levels in patients with dyslipidemia. Survey studies have demonstrated that in real-world settings, only 67% of patients with treated dyslipidemia reach their LDL-C target level goals [
14]. In this study, rosuvastatin treatment was associated with reaching recommended LDL-C level goals in a higher percentage of patients overall as compared to atorvastatin (87.6 vs. 69.9%). In particular, rosuvastatin was more effective in patients requiring more intensive LDL-C level lowering to less than 100 or 130 mg/dL. In high-risk patients with stronger targets of LDL-C levels < 100 mg/dL, rosuvastatin brought 83% of patients in this trial to the ATP III LDL-C level goal, which was higher than achieved in other studies conducted in South-Asian (76%) and Hispanic-American (61%) patients [
15,
16]. Both statins, however, were effective in patients with high target LDL-C level goals < 160 mg/dL. These data highlight the importance of using highly effective statins in high-risk patients to enable them to achieve their lower NCEP ATP III LDL-C level goals.
With respect to other elements of the lipid profile, improvements in total cholesterol, apolipoprotein B, and non-HDL-C levels were also significantly greater with rosuvastatin as compared to atorvastatin, whereas changes in HDL-C, triglyceride, and apolipoprotein A1 levels were similar in both treatment groups. Unlike other studies in which rosuvastatin effectively raised HDL-C levels [
9,
15], HDL-C levels in this study were not effectively improved in either group [
9].
Metabolic syndrome is associated with an increased risk of both insulin resistance and diabetes [
17]. Additionally, changes in the insulin resistance index were investigated by evaluating the HOMA index, which is a positive predictor of metabolic syndrome [
18]. Studies in an animal model of insulin resistance suggest that rosuvastatin treatment increases whole-body and peripheral tissue insulin sensitivity via improved cellular insulin signal transduction [
19]. In contrast, in our study conducted in nondiabetic subjects, a tendency was detected for an increased HOMA index in both treatment arms. Major changes in this parameter were attributable to high increases in insulin concentrations. The degrees of percent change in fasting glucose, insulin concentrations, and HOMA index were not significantly different between the rosuvastatin and atorvastatin treatment groups. Thus, further studies are needed to elucidate the effects of statins on glucose metabolism, insulin secretion, and insulin sensitivity under diabetic or nondiabetic conditions.
A multivariate analysis was performed to determine independent predictors of LDL-C goal achievement at 6 weeks. Overall, sex, the presence of coronary artery disease, LDL-C levels, and rosuvastatin treatment were predictive of target LDL-C achievement. Among these factors, rosuvastatin was the strongest predictor, with an odds ratio of 3.26. Moreover, the presence of coronary artery disease was an independent predictor of achieving target LDL-C levels. These patients were assumed to have been more likely to take interest in diet control or exercise than patients without coronary artery disease.
Although the findings of this study are provocative, this study has important limitations. Recently, intensive regimens with 80 mg of atorvastatin or 20 mg of rosuvastatin have become available in Korea and produce greater reductions in atherosclerotic lipoprotein levels, which is particularly useful in patients with established coronary artery disease or acute coronary syndrome. Further studies comparing statins across dose ranges in patients not reaching their target goal with low-dose statins are required. Additionally, although changes metabolic parameters were not the primary endpoint of this study, a trend toward differences in blood glucose levels was observed between the two statins. Further studies are needed to elucidate the metabolic effects of statins.
In conclusion, this study demonstrated that rosuvastatin 10 mg is significantly more effective than atorvastatin 10 mg in reducing LDL-C levels in patients with nondiabetic metabolic syndrome, especially among those with lower NCEP ATP III target level goals. Both statins were well tolerated.