1. Samuel AL. Some studies in machine learning using the game of checkers. IBM J Res Dev 1959;3:210–229.
2. Witten IH, Frank E, Hall MA, Pal CJ. Data Mining: Practical Machine Learning Tools and Techniques. 4th ed. Cambridge (MA): Elsevier Science, 2016.
3. Nasrabadi NM. Pattern recognition and machine learning. J Electron Imaging 2007;16:049901.
4. Michalski RS, Carbonell JG, Mitchell TM. Machine Learning: An Artificial Intelligence Approach. Berlin (DE): Springer Berlin Heidelberg, 2013.
6. Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic E. Deep learning applications and challenges in big data analytics. J Big Data 2015;2:1.
8. Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism 2017;69S:S36–S40.
9. Boyan J, Freitag D, Joachims T. A machine learning architecture for optimizing web search engines. AAAI Workshop on Internet Based Information Systems. 1996 May 10. Portland: OR.
10. Guzella TS, Caminhas WM. A review of machine learning approaches to spam filtering. Expert Syst Appl 2009;36:10206–10222.
11. Etzioni O, Tuchinda R, Knoblock CA, Yates A. To buy or not to buy: mining airfare data to minimize ticket purchase price. In : Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining; 2003 Aug 24-27; Washington, DC. New York (NY). ACM. 2003. 119–128.
12. Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. In : International Conference on Learning Representations; 2015. 2015 May 7-9; San Diego, CA.
13. Perlich C, Dalessandro B, Raeder T, Stitelman O, Provost F. Machine learning for targeted display advertising: transfer learning in action. Mach Learn 2014;95:103–127.
14. Rabunal JR, Dorrado J. Artificial Neural Networks in Real-Life Applications. Hershey (PA): Idea Group Pub, 2006.
15. Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol 2017;69:2657–2664.
19. Choi YS. Concepts, characteristics, and clinical validation of IBM Watson for oncology. Hanyang Med Rev 2017;37:49–60.
21. Goldblatt F, O'Neill SG. Clinical aspects of autoimmune rheumatic diseases. Lancet 2013;382:797–808.
22. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet 2016;388:2023–2038.
23. Giacomelli R, Afeltra A, Alunno A, et al. International consensus: what else can we do to improve diagnosis and therapeutic strategies in patients affected by autoimmune rheumatic diseases (rheumatoid arthritis, spondyloarthritides, systemic sclerosis, systemic lupus erythematosus, antiphospholipid syndrome and Sjogren's syndrome)? The unmet needs and the clinical grey zone in autoimmune disease management. Autoimmun Rev 2017;16:911–924.
24. Winthrop KL, Strand V, van der Heijde D, et al. The unmet need in rheumatology: reports from the targeted therapies meeting 2017. Clin Immunol 2018;186:87–93.
27. Noell G, Faner R, Agusti A. From systems biology to P4 medicine: applications in respiratory medicine. Eur Respir Rev 2018;27:170110.
28. Kim M, Tagkopoulos I. Data integration and predictive modeling methods for multi-omics datasets. Mol Omics 2018;14:8–25.
30. Chartrand G, Cheng PM, Vorontsov E, et al. Deep learning: a primer for radiologists. Radiographics 2017;37:2113–2131.
36. James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning: With Applications in R. New York (NY): Springer New York, 2013.
37. Kuhn M, Johnson K. Applied Predictive Modeling. New York (NY): Springer New York, 2013.
38. Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H. eDoctor: machine learning and the future of medicine. J Intern Med 2018;284:603–619.
39. Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: are we there yet? Heart 2018;104:1156–1164.
40. van Gestel AM, Prevoo ML, van 't Hof MA, van Rijswijk MH, van de Putte LB, van Riel PL. Development and validation of the European League Against Rheumatism response criteria for rheumatoid arthritis. Comparison with the preliminary American College of Rheumatology and the World Health Organization/International League Against Rheumatism Criteria. Arthritis Rheum 1996;39:34–40.
43. Magidson J, Vermunt J. Latent class models for clustering: A comparison with K-means. Can J Mark Res 2002;20:36–43.
46. Torrey L, Shavlik J. Transfer learning. In: Olivas ES, ed. Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques. Hershey, PA: IGI Global, 2010;242–264.
47. Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 2017;284:574–582.
48. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In : Advances in neural information processing systems 25; 2012 Dec 3-6; Lake Tahoe, NV. Red Hook (NY). In : Curran Associates; 2012. 1097–1105.
49. He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In : Proceedings of the 2015 IEEE International Conference on Computer Vision; 2015 Dec 7-13; Santiago, Chile. Piscataway (NJ). In : IEEE; 2015. 1026–1034.
50. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. Imagenet: a large-scale hierarchical image database. In : 2009 IEEE Conference on Computer Vision and Pattern Recognition; 2009 Jun 20-25; Miami, FL. Piscataway (NJ). In : IEEE; 2009. 248–255.
52. Alpert JS. The electronic medical record in 2016: advantages and disadvantages. Digit Med 2016;2:48–51.
54. Chan KS, Fowles JB, Weiner JP. Review: electronic health records and the reliability and validity of quality measures. A review of the literature. Med Care Res Rev 2010;67:503–527.
57. Cherkassky VS, Mulier FM. Learning from Data: Concepts, Theory, and Methods. 2nd ed. Hoboken (NJ): Wiley, 2007.
58. Kilkenny MF, Robinson KM. Data quality: "Garbage in-garbage out". Health Inf Manag 2018;47:103–105.
59. Kotsiantis SB, Kanellopoulos D, Pintelas PE. Data preprocessing for supervised leaning. Int J Comput Electr Autom Control Inf Eng 2006;1:111–117.
60. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In : Proceedings of the 14th international joint conference on Artificial intelligence volume 2; 1995 Aug 20-25; Montreal, QC. San Mateo (CA). In : Morgan Kaufmann Publishers Inc; 1995. 1137–1143.
61. Domingos P. A few useful things to know about machine learning. Commun ACM 2012;55:78–87.
62. Lever J, Krzywinski M, Altman N. Points of significance: model selection and overfitting. Nat Methods 2016;13:703–704.
63. Hawkins DM. The problem of overfitting. J Chem Inf Comput Sci 2004;44:1–12.
64. Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003;3:1157–1182.
66. Banko M, Brill E. Scaling to very very large corpora for natural language disambiguation. In : Proceedings of the 39th Annual Meeting on Association for Computational Linguistics; 2001 Jul 6-11; Toulouse, France. San Francisco (CA). In : Morgan Kaufmann Publishers; 2001. 26–33.
67. Longadge R, Dongre S, Malik L. Class imbalance problem in data mining: review. Int J Comput Sci Netw 2013;2:83–87.
70. Ben-David A. A lot of randomness is hiding in accuracy. Eng Appl Artif Intell 2007;20:875–885.
76. Guan WJ, Jiang M, Gao YH, et al. Unsupervised learning technique identifies bronchiectasis phenotypes with distinct clinical characteristics. Int J Tuberc Lung Dis 2016;20:402–410.
78. Koyner JL, Carey KA, Edelson DP, Churpek MM. The development of a machine learning inpatient acute kidney injury prediction model. Crit Care Med 2018;46:1070–1077.
79. Kleiman RS, LaRose ER, Badger JC, et al. Using machine learning algorithms to predict risk for development of calciphylaxis in patients with chronic kidney disease. AMIA Jt Summits Transl Sci Proc 2018;2017:139–146.
82. Beck AH, Sangoi AR, Leung S, et al. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci Transl Med 2011;3:108ra113.
83. Cheng WY, Ou Yang TH, Anastassiou D. Development of a prognostic model for breast cancer survival in an open challenge environment. Sci Transl Med 2013;5:181ra50.
85. Shouval R, Labopin M, Bondi O, et al. Prediction of allogeneic hematopoietic stem-cell transplantation mortality 100 days after transplantation using a machine learning algorithm: a European group for blood and marrow transplantation acute leukemia working party retrospective data mining study. J Clin Oncol 2015;33:3144–3151.
88. Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY. An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 2002;24:881–892.
92. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. Ann Appl Stat 2008;2:841–860.
93. Ehrlinger J. ggRandomForests: exploring random forest survival [Internet]. ArXiv: 2016. [cited 2018 Nov 15]. Available from:
https://arxiv.org/abs/1612.08974.
96. Abasolo L, Ivorra-Cortes J, Leon L, Jover JA, Fernandez-Gutierrez B, Rodriguez-Rodriguez L. Influence of demographic and clinical factors on the mortality rate of a rheumatoid arthritis cohort: a 20-year survival study. Semin Arthritis Rheum 2016;45:533–538.
97. Ward MM, Pajevic S, Dreyfuss J, Malley JD. Short-term prediction of mortality in patients with systemic lupus erythematosus: classification of outcomes using random forests. Arthritis Rheum 2006;55:74–80.
99. Data glitches are hazardous to your health. Sci Am 2013;309:10.