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Supplementary Table 1. Summary of aritifical intellignence in AKI assessment papers

Ref Year Task

Baseline Cr
Methods for handling  

missing data
Model AUROC

Presentation 
of missing 

data  
proportion

Using of 
public 

datasets

Real- 
time pre-
diction

External 
validation

AKI definition

[S1] 2015 AKI within 2 to 9 days 
after admission

Average values within 7 to 365 
days prior to admission

Median imputation was 
used

LR 0.83 O X X X

KDIGO without UO

[S2] 2018 AKI at various periods 
after admission

The last measured value within 
2 days prior to admission or 
the first measurement during 
hospitalization

Removed RF 0.77 X X △ X

KDIGO without UO

[S3] 2018 AKI within 2 days post-
liver transplantation

The most recent value measured 
before the surgery

For less than 1% missing, 
the mean and median of 
continuous variables; for 
less than 5% missing, hot-
deck imputation was used

GBM 0.90 O X X X

AKIN without UO

[S4] 2019 AKI at various periods 
after admission

The last measured value within 
2 days before admission or 
the first measurement after 
admission

Missing indicator was used Ensemble 0.74 X X △ X

KDIGO without UO

[S5] 2020 AKI and RRT within 48 
hours in hospitalized 
patients

The first value measured at the 
time of admission

After replacing with 
the most recent value, 
imputation with the 
median or mode was used

GBM 0.86 X X O O

KDIGO without UO

[S6] 2020 AKI within 7 days after 
aortic arch surgery

The most recent value before 
surgery

Removed LGBM 0.83 O X X X

KDIGO without UO

[S7] 2020 AKI within 7 days after 
cardiac surgery

The last measured value before 
surgery

Replaced by mean and 
mode values

Ensemble 0.84 O X X X

KDIGO without UO

[S8] 2020 AKI within 7 days after 
partial nephrectomy

Not clearly stated Not clearly stated XGB 0.74 X X X X

KDIGO with UO
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Ref Year Task

Baseline Cr
Methods for handling  

missing data
Model AUROC

Presentation 
of missing 

data  
proportion

Using of 
public 

datasets

Real- 
time pre-
diction

External 
validation

AKI definition

[S9] 2020 AKI after ICU admission Average value within 7 to 180 
days before admission

Replaced with mean values GBM 0.69 X X X O

KDIGO with UO

[S10] 2022 AKI in patients 
undergoing knee 
arthroplasty

The last measured value within 
6 months before surgery

Model’s own algorithm was 
used

GBM 0.78 O X X O

KDIGO without UO

[S11] 2021 Survival within 1, 5, 
17 years after kidney 
transplantation

Not clearly stated Removed SVM 0.82 X X X X

[S12] 2021 AKI within 72 hours 
after ICU admission

The minimum value on the first 
day of admission

After removing rows with 
more than 50%, MICE 
was used

LGBM 0.90 X O X X

KDIGO with UO

[S13] 2021 AKI within 48 hours in 
PICU

Average considering age and 
gender

No missing values Ensemble 0.89 X X O O

KDIGO without UO

[S14] 2021 AKI associated with 
cardiac surgery 
(duration not 
specified)

Not clearly stated After excluding features 
with more than 5%, 
patients with any missing 
values were removed

GBM 0.85 O X X X

Post-surgery SCr exceeding 2.26 
mg/dL, doubling or more from 
the baseline, or RRT

[S15] 2021 AKI within 7 days 
after nephrectomy in 
patients with renal 
cell carcinoma

Measured value before surgery 
(not clearly stated)

Not clearly stated LGBM 0.81 X X X X

KDIGO without UO

[S16] 2021 Recovery of AKI within 
48 hours in patients 
who developed AKI 
within 48 hours after 
ICU admission for 
sepsis

The minimum value during 7 
days before admission

After excluding features 
with more than 30%, 
MissForest was used

ANN 0.76 O O X X

KDIGO with UO
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Ref Year Task

Baseline Cr
Methods for handling  

missing data
Model AUROC

Presentation 
of missing 

data  
proportion

Using of 
public 

datasets

Real- 
time pre-
diction

External 
validation

AKI definition

[S17] 2022 Severe AKI within 48 
hours in the ICU

Not clearly stated After removing features 
with more than 50%, 30-
50% were checked with 
specialist and MICE was 
used for less than 30%

XGB 0.86 X O O O

KDIGO (AKI if stage II or III 
criteria are met, negative for 
the rest)

[S18] 2022 Prediction of 
progression from AKI 
stages 1/2 to AKI 3 in 
ICU patients

Not clearly stated After removing features 
with more than 70%, 
XGBoost’s internal method 
was used

XGB 0.93 X O X X

KDIGO with UO

[S19] 2022 AKI within 7 days after 
cardiac surgery

The first measured value at 
hospital admission

Some were filled in upon 
review, and multiple 
imputation was used for 
the remaining

DF 0.88 X X X X

KDIGO without UO

[S20] 2022 AKI within 7 days after 
cardiac surgery

The first measured value at 
hospital admission

Not clearly stated RF 0.74 X X X X

KDIGO without UO

[S21] 2022 AKI within 7 days after 
liver transplantation in 
patients

The most recent value 
within 3 months before 
hospital admission, or the 
first measured value upon 
admission 

Not clearly stated ANN 0.81 X X X X

International Club of Ascites

[S22] 2022 Mortality during 
hospital stay in 
patients who 
developed AKI within 
24 hours after ICU 
admission

The minimum value within 7 
days

After removing features 
with more than 20%, 
multiple imputation was 
used

XGB 0.89 O O X X

KDIGO with UO

[S23] 2022 Recovery of AKI within 
72 hours in patients 
who developed AKI 
within 48 hours after 
ICU admission

Not clearly stated Not clearly stated RF 0.77 O X X X
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Ref Year Task

Baseline Cr
Methods for handling  

missing data
Model AUROC

Presentation 
of missing 

data  
proportion

Using of 
public 

datasets

Real- 
time pre-
diction

External 
validation

AKI definition

[S24] 2021 Oliguric AKI stages 2/3 
in ICU

The minimum available value 
during the hospital stay or the 
most recent value within 4 
days

Only urine volume and SCr  
were used, with SCr being 
the same as baseline 
and urine volume was 
calculated using a 9-hour 
average

ANN 0.91 O X O O

KDIGO with UO

[S25] 2022 Mortality during 
hospital stay in ICU 
patients over 60 years 
with AKD

The minimum value during the 
hospital stay or estimated 
value

Not clearly stated XGB 0.90 O X X O

KDIGO with UO

[S26] 2022 AKI in patients 
hospitalized for acute 
pancreatitis

Not clearly stated Not clearly stated RF 0.91 X X X △

KDIGO with UO

[S27] 2022 AKI after orthopedic 
surgery in elderly 
patients

The most recent value before 
surgery

Not clearly stated LR 0.82 X X X X

KDIGO without UO

[S28] 2022 Persistent AKI in 
patients who 
developed AKI after 
surgery in ICU

The minimum value within 6 
months before ICU admission 
or estimated value

After removing features 
with more than 20%, 
multiple imputation was 
used

Emsemble 0.86 O X X O

KDIGO without UO

[S29] 2022 AKI in ICU for sepsis Not clearly stated After removing features with 
more than 20%, multiple 
imputation was used

XGB 0.82 O X X X

KDIGO with UO

[S30] 2021 Occurrence and 
recovery of AKI stages 
2/3 in all patients

The minimum SCr during 
hospital stay

Model’s own algorithm was 
used

XGB Not 
reported

X O X X

KDIGO without UO (not clear)

[S31] 2023 Prediction of AKI 
stages 2/3 and 
AKI stage 3 after 
the initial 12 hours 
following Mechanical 
Ventilation

The average value before ICU 
admission or using the first 
measured value upon ICU 
admission

Not clearly stated RF 0.82 O O O O

KDIGO without UO (excluding 
criteria for acute dialysis, RRT)

Supplementary Table 1. Continued

www.kjim.org


Jeong I, et al. M
achine learning and acute kidney injury 

w
w
w
.kjim

.org
https://doi.org/10.3904/kjim

.2024.098

Ref Year Task

Baseline Cr
Methods for handling  

missing data
Model AUROC

Presentation 
of missing 

data  
proportion

Using of 
public 

datasets

Real- 
time pre-
diction

External 
validation

AKI definition

[S32] 2024 Progression of AKI 
stages in patients 
who experienced AKI 
within 48 hours after 
cardiac surgery and 
received furosemide 
injection within 
24 hours after AKI 
diagnosis

The minimum measured value 
within 3 months before cardiac 
surgery, excluding undefined 
patients

Multiple imputation was 
used

LR 0.81 O X X X

KDIGO with UO

[S33] 2023 Recovery of renal 
function within 1 year 
after utilizing RS in 
AKD patients

The minimum measured value 
within 365 days before RS, 
excluding undefined patients

Not clearly stated RS 0.74 X O X X

KDIGO without UO

[S34] 2024 AKI within 7 days in 
lymphoma patients 
treated with 
methotrexate

The most recent value measured 
within 72 hours before 
medication administration, 
excluding undefined patients

Not clearly stated LASSO 0.72 X X X X

KDIGO without UO

[S35] 2023 Prediction of stage 
2 or higher AKI on 
the third day of 
hospitalization in 
pediatric ICU patients 
using RAI

The minimum value within 90 
days before ICU admission or 
estimated value

Not clearly stated RAI 0.77 X X X X

KDIGO with UO

[S36] 2023 AKI from 24 hours 
after admission until 
discharge in ICU-
admitted patients 
with cirrhosis

Measured value within 7 days 
before ICU admission or the 
first measured value after ICU 
admission

After removing features 
with more than 80%, 
linear interpolation was 
used

ANN 0.76 O X X O

KDIGO with UO
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Ref Year Task

Baseline Cr
Methods for handling  

missing data
Model AUROC

Presentation 
of missing 

data  
proportion

Using of 
public 

datasets

Real- 
time pre-
diction

External 
validation

AKI definition

[S37] 2023 Mortality within 30 
days, AKI recovery 
within 30 days, and 
AKI recovery within 
90 days in AKI 
patients who received 
RRT

Not clearly stated Not clearly stated RF 0.67 X X X X

KDIGO with UO

[S38] 2023 Mortality within 7, 14, 
28 days in patients 
who developed AKI 
within 24 hours after 
admission for sepsis 
to the ICU

Measured value before 
admission or the first value at 
admission

After removing features 
with more than 30%, 
multiple imputation was 
used

XGB 0.91 O O X O

KDIGO with UO

[S39] 2023 Mortality during 
hospital stay in 
patients who 
developed AKI within 
48 hours after ICU 
admission for sepsis

Measured value before 
admission or the first value at 
admission

Multiple imputation was 
used

XGB 0.79 O O X X

KDIGO with UO 

[S40] 2023 AKI in patients who 
developed ARDS on 
the first day after ICU 
admission

Applying ICD codes After removing features 
with more than 20%, 
multiple imputation was 
used

XGB 0.87 O X X X

[S41] 2023 Mortality within 28 
days in patients who 
developed AKI on 
the first day after ICU 
admission for sepsis

Not clearly stated After removing features 
with more than 20%, 
MissForest was used 

XGB 0.87 X O X X

KDIGO with UO

[S42] 2023 Occurrence of stage 3 
or higher AKI in TBI 
patients

Not clearly stated Multiple imputation was 
used

RF 0.82 O O X O

KDIGO with UO
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Baseline Cr
Methods for handling  

missing data
Model AUROC

Presentation 
of missing 

data  
proportion

Using of 
public 

datasets

Real- 
time pre-
diction

External 
validation

AKI definition

[S43] 2024 Occurrence of stage 
2 or higher AKI in 
septic patients with 
hypertension

Not clearly stated Not clearly stated Nomogram 0.82 X X X X

KDIGO with UO

AKI, acute kidney injury; Cr, creatinine; AUROC, area under the receiver operating characteristic curve; KDIGO, Kidney Disease: Improving Global Outcomes; UO, urine 
output; LR, logistic regression; RF, random forest; AKIN, acute kidney injury network; GBM, gradient boosting machine; RRT, renal replacement therapy; LGBM, light 
gradient boosting machine; XGB, extreme gradient boosting; ICU, intensive care unit; SVM, support vector machine; PICU, pediatric intensive care unit; MICE, multiple 
imputation by chained equations; DF, deep forest; ANN, artificial neural network; SCr, serum creatinine; AKD, acute kidney disease; RS, renal scintigraphy; LASSO, least 
absolute shrinkage and selection operator; RAI, renal angina index; ARDS, acute respiratory distress syndrome; ICD, International Classification of Diseases; TBI, traumatic 
brain injury; eGFR, estimated glomerular filtration rate.
“Estimated value” refers to the estimation of parameters, such as eGFR, using methods like modification of diet in renal disease when baseline is unavailable. “△” signifies 
insufficient information for assessment. “Ensemble” refers to the combination of individual models through methods like voting, each developed separately.
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