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Supplementary Table 1. Summary of aritifical intellignence in AKI assessment papers

Presentation

Baseline Cr . o Usingof  Real-
Ref  Year Task Metho.dslfor el Model AUROC O liIEHne) public  time pre- Ex.terr?al
o missing data data datasets diction validation
AKI definition proportion
[S1] 2015 AKIwithin2to 9days Average values within 7 to 365  Median imputation was LR 0.83 0 X X X
after admission days prior to admission used
KDIGO without UO
[S2] 2018 AKIat various periods  The last measured value within ~ Removed RF 0.77 X X A X
after admission 2 days prior to admission or
the first measurement during
hospitalization
KDIGO without UO
[S3] 2018 AKI within 2 days post- The most recent value measured For less than 1% missing, GBM 0.90 0 X X X
liver transplantation before the surgery the mean and median of
AKIN without UO continuous variables; for
less than 5% missing, hot-
deck imputation was used
[S4] 2019 AKI at various periods  The last measured value within  Missing indicator was used Ensemble 0.74 X X A X
after admission 2 days before admission or
the first measurement after
admission
KDIGO without UO
[S5] 2020 AKIand RRT within 48  The first value measured at the ~ After replacing with GBM 0.86 X X 0 0
hours in hospitalized  time of admission the most recent value,
patients KDIGO without UO imputation with the
median or mode was used
[S6] 2020 AKI within 7 days after The most recent value before Removed LGBM 0.83 0 X X X
aortic arch surgery surgery
KDIGO without UO
[S7] 2020 AKIwithin 7 days after The last measured value before  Replaced by mean and Ensemble 0.84 0 X X X
cardiac surgery surgery mode values
KDIGO without UO
[S8] 2020 AKIwithin 7 days after Not clearly stated Not clearly stated XGB 0.74 X X X X
partial nephrectomy  kp|GO with UO
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Supplementary Table 1. Continued

Sesaline G Presentation Using of i
: - go Real
: : E |
Ref  Year Task l\/Ietho.dslfor handiing Model  AUROC of missing public  time pre- X.tema
missing data data i validation
AKI definition e datasets  diction
[S9] 2020 AKI after ICU admission Average value within 7 to 180  Replaced with mean values GBM 0.69 X X X 0
days before admission
KDIGO with UO
[S10] 2022 AKlin patients The last measured value within -~ Model’s own algorithm was GBM 0.78 0 X X 0
undergoing knee 6 months before surgery used
arthroplasty KDIGO without UO
[S11] 2021 Survival within 1, 5, Not clearly stated Removed SVM 0.82 X X X X
17 years after kidney
transplantation
[S12] 2021 AKI within 72 hours The minimum value on the first ~ After removing rows with LGBM 0.90 X ) X X
after ICU admission day of admission more than 50%, MICE
KDIGO with UO was used
[S13] 2021 AKI within 48 hoursin  Average considering age and No missing values Ensemble 0.89 X X 0 0]
PICU gender
KDIGO without UO
[S14] 2021 AKI associated with Not clearly stated After excluding features GBM 0.85 0 X X X
cardiac surgery Post-surgery SCr exceeding 2.26 ~ With more than 5%,
(duration not mg/dL, doubling or more from  Patients with any missing
specified) the baseline, or RRT values were removed
[S15] 2021 AKI within 7 days Measured value before surgery  Not clearly stated LGBM 0.81 X X X X
after nephrectomy in ~ (not clearly stated)
patients with renal KDIGO without UO
cell carcinoma
[S16] 2021 Recovery of AKIwithin  The minimum value during 7 After excluding features ANN 0.76 ) 0 X X

48 hours in patients
who developed AKI
within 48 hours after
ICU admission for
sepsis

days before admission
KDIGO with UO

with more than 30%,
MissForest was used
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Baseline Cr Using of Real-
i issi . . E |
Ref  Year Task l\/Ietho.dslfor handiing Model  AUROC of missing public  time pre- X.tema
o missing data data datasets  diction validation
AKI definition proportion
[S17] 2022 Severe AKIwithin 48 Not clearly stated After removing features XGB 0.86 X 0 0
hours in the ICU KDIGO (AKI if stage Il or Ill with more than 50%,.30—
criteria are met, negative for 50% were checked with
the rest) specialist and MICE was
used for less than 30%
[S18] 2022 Prediction of Not clearly stated After removing features XGB 093 X 0 X
progression from AKl  kp|GO with UO with more than 70%,
stages 1/2 to AKI 3'in XGBoost's internal method
ICU patients was used
[S19] 2022 AKIwithin 7 days after The first measured value at Some were filled in upon DF 0.88 X X X
cardiac surgery hospital admission review, and multiple
KDIGO without UO imputation was used for
the remaining
[S20] 2022 AKIwithin 7 days after The first measured value at Not clearly stated RF 0.74 X X X
cardiac surgery hospital admission
KDIGO without UO
[S21] 2022 AKIwithin 7 days after The most recent value Not clearly stated ANN 0.81 X X X
liver transplantation in  within 3 months before
patients hospital admission, or the
first measured value upon
admission
International Club of Ascites
[S22] 2022 Mortality during The minimum value within 7 After removing features XGB 0.89 0 0 X
hospital stay in days with more than 20%,
patients who KDIGO with UO multiple imputation was
developed AKI within used
24 hours after ICU
admission
[S23] 2022 Recovery of AKIwithin  Not clearly stated Not clearly stated RF 0.77 O X X

72 hours in patients
who developed AKI
within 48 hours after
ICU admission
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Supplementary Table 1. Continued

Secaline @ Presentation Using of i
: - go Real
: : E |
Ref  Year Task l\/Ietho.dslfor handiing Model  AUROC of missing public  time pre- X.tema
missing data data i validation
AKI definition e datasets  diction
[S24] 2021 Oliguric AKIstages 2/3  The minimum available value Only urine volume and SCr ANN 0.91 0 X 0 o]
inICU during the hospital stay or the  were used, with SCr being
most recent value within 4 the same as baseline
days and urine volume was
KDIGO with UO calculated using a 9-hour
average
[S25] 2022 Mortality during The minimum value during the  Not clearly stated XGB 0.90 0 X X 0]
hospital stay in ICU hospital stay or estimated
patients over 60 years  value
with AKD KDIGO with UO
[S26] 2022 AKIin patients Not clearly stated Not clearly stated RF 0.91 X X X A
hospitalized for acute  kpiGO with UO
pancreatitis
[S27] 2022 AKI after orthopedic The most recent value before Not clearly stated LR 0.82 X X X X
surgery in elderly surgery
patients KDIGO without UO
[S28] 2022 Persistent AKlin The minimum value within 6 After removing features Emsemble 0.86 0 X X 0
patients who months before ICU admission  with more than 20%,
developed AKI after or estimated value multiple imputation was
surgery in ICU KDIGO without UO used
[S29] 2022 AKlin ICU for sepsis Not clearly stated After removing features with XGB 0.82 0 X X X
KDIGO with UO more than 20%, multiple
imputation was used
[S30] 2021 Occurrence and The minimum SCr during Model’s own algorithm was XGB Not X 0 X X
recovery of AKl stages hospital stay used reported
2/3in all patients KDIGO without UO (not clear)
[S31] 2023 Prediction of AKI The average value before ICU Not clearly stated RF 0.82 O 0 0 6]

stages 2/3 and

AKl stage 3 after

the initial 12 hours
following Mechanical
Ventilation

admission or using the first
measured value upon ICU
admission

KDIGO without UO (excluding
criteria for acute dialysis, RRT)
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Presentation

Baseline Cr Using of Real-
i isSi : : E |
Ref  Year Task l\/Ietho.dslfor handiing Model  AUROC of missing public  time pre- x.terr?a
o missing data data datasets  diction validation
AKI definition proportion
[S32] 2024 Progression of AKI The minimum measured value  Multiple imputation was LR 0.81 O X X X
stages in patients within 3 months before cardiac  used
who experienced AKI  surgery, excluding undefined
within 48 hours after  patients
cardiac surgery and  kpIGO with UO
received furosemide
injection within
24 hours after AKI
diagnosis
[S33] 2023 Recovery of renal The minimum measured value  Not clearly stated RS 0.74 X 0 X X
function within 1 year  within 365 days before RS,
after utilizing RS in excluding undefined patients
AKD patients KDIGO without UO
[S34] 2024 AKIwithin 7 days in The most recent value measured Not clearly stated LASSO 0.72 X X X X
lymphoma patients within 72 hours before
treated with medication administration,
methotrexate excluding undefined patients
KDIGO without UO
[S35] 2023 Prediction of stage The minimum value within 90  Not clearly stated RAI 0.77 X X X X
2 or higher AKlI on days before ICU admission or
the third day of estimated value
hospitalization in KDIGO with UO
pediatric ICU patients
using RAI
[S36] 2023 AKI from 24 hours Measured value within 7 days ~ After removing features ANN 0.76 0 X X 0

after admission until
discharge in ICU-
admitted patients
with cirrhosis

before ICU admission or the
first measured value after ICU
admission

KDIGO with UO

with more than 80%,
linear interpolation was
used
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Ref  Year Task l\/Ietho.dslfor handiing Model  AUROC of missing U;g]bgli?f tirssarire- Ex.terr?al
missing data data i validation
AKI definition e datasets  diction
[S37] 2023 Mortality within 30 Not clearly stated Not clearly stated RF 0.67 X X X
days, AKI recovery KDIGO with UO
within 30 days, and
AKI recovery within
90 days in AKI
patients who received
RRT
[S38] 2023 Mortality within 7, 14,  Measured value before After removing features XGB 0.91 0 0 X
28 days in patients admission or the first value at ~ with more than 30%,
who developed AKI admission multiple imputation was
within 24 hours after  kpiGO with UO used
admission for sepsis
to the ICU
[S39] 2023 Mortality during Measured value before Multiple imputation was XGB 0.79 0 0 X
hospital stay in admission or the first value at ~ used
patients who admission
developed AKI within - kp|GO with UO
48 hours after ICU
admission for sepsis
[S40] 2023 AKIin patients who Applying ICD codes After removing features XGB 0.87 (] X X
developed ARDS on with more than 20%,
the first day after ICU multiple imputation was
admission used
[S41] 2023 Mortality within 28 Not clearly stated After removing features XGB 0.87 X 0 X
days in patients who  kp|GO with UO with more than 20%,
developed AKIl on MissForest was used
the first day after ICU
admission for sepsis
[S42] 2023 Occurrence of stage 3 Not clearly stated Multiple imputation was RF 0.82 0 0 X

or higher AKl in TBI
patients

KDIGO with UO

used
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