Comorbidity Study on Type 2 Diabetes Mellitus Using Data Mining
Hye Soon Kim, A Mi Shin, Mi Kyung Kim, Yoon Nyun Kim
Korean J Intern Med. 2012;27(2):197-202. Published online 2012 May 31 DOI: https://doi.org/10.3904/kjim.2012.27.2.197
|
Citations to this article as recorded by
Diabetes management, dietary supplements use and the effect of coronavirus pandemic on diabetes patients in Serbia: a cross-sectional study
Milana Vuković, Jelena Jovičić Bata, Nemanja Todorović, Gorana Puača, Dunja Vesković, Jelena Čanji Panić, Tihomir Dugandžija, Mladena Lalić-Popović
Current Medical Research and Opinion.2024; 40(2): 165. CrossRef Machine and deep learning techniques for the prediction of diabetics: a review
Sandip Kumar Singh Modak, Vijay Kumar Jha
Multimedia Tools and Applications.2024;[Epub] CrossRef Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review
Vicente Javier Clemente-Suárez, Ana Isabel Beltrán-Velasco, Laura Redondo-Flórez, Alexandra Martín-Rodríguez, José Francisco Tornero-Aguilera
Nutrients.2023; 15(12): 2749. CrossRef Prescription pattern analysis of Type 2 Diabetes Mellitus: a cross-sectional study in Isfahan, Iran
Elnaz Ziad, Somayeh Sadat, Farshad Farzadfar, Mohammad-Reza Malekpour
BioData Mining.2023;[Epub] CrossRef A Machine Learning Approach for Identification of Malignant Mesothelioma Etiological Factors in an Imbalanced Dataset
Talha Mahboob Alam, Kamran Shaukat, Haris Mahboob, Muhammad Umer Sarwar, Farhat Iqbal, Adeel Nasir, Ibrahim A Hameed, Suhuai Luo
The Computer Journal.2022; 65(7): 1740. CrossRef Variations in comorbidity burden in people with type 2 diabetes over disease duration: A population-based analysis of real world evidence
Jonathan Pearson-Stuttard, Sara Holloway, Rosie Polya, Rebecca Sloan, Linxuan Zhang, Edward W. Gregg, Katy Harrison, Jamie Elvidge, Pall Jonsson, Thomas Porter
eClinicalMedicine.2022; 52: 101584. CrossRef Detection and Prediction of Diabetes Using Data Mining: A Comprehensive Review
Farrukh Aslam Khan, Khan Zeb, Mabrook Al-Rakhami, Abdelouahid Derhab, Syed Ahmad Chan Bukhari
IEEE Access.2021; 9: 43711. CrossRef MorbiNet: multimorbidity networks in adult general population. Analysis of type 2 diabetes mellitus comorbidity
Alba Aguado, Ferran Moratalla-Navarro, Flora López-Simarro, Victor Moreno
Scientific Reports.2020;[Epub] CrossRef Inferring Relationship of Blood Metabolic Changes and Average Daily Gain With Feed Conversion Efficiency in Murrah Heifers: Machine Learning Approach
Poonam Sikka, Abhigyan Nath, Shyam Sundar Paul, Jerome Andonissamy, Dwijesh Chandra Mishra, Atmakuri Ramakrishna Rao, Ashok Kumar Balhara, Krishna Kumar Chaturvedi, Keerti Kumar Yadav, Sunesh Balhara
Frontiers in Veterinary Science.2020;[Epub] CrossRef Using association rule mining to jointly detect clinical features and differentially expressed genes related to chronic inflammatory diseases
Rosana Veroneze, Sâmia Cruz Tfaile Corbi, Bárbara Roque da Silva, Cristiane de S. Rocha, Cláudia V. Maurer-Morelli, Silvana Regina Perez Orrico, Joni A. Cirelli, Fernando J. Von Zuben, Raquel Mantuaneli Scarel-Caminaga, Paolo Magni
PLOS ONE.2020; 15(10): e0240269. CrossRef Comorbidity Patterns of Older Lung Cancer Patients in Northeast China: An Association Rules Analysis Based on Electronic Medical Records
Jia Feng, Xiao-min Mu, Ling-ling Ma, Wei Wang
International Journal of Environmental Research and Public Health.2020; 17(23): 9119. CrossRef Examining Development Processes for Text Messaging Interventions to Prevent Cardiovascular Disease: Systematic Literature Review
Ignacio Ricci-Cabello, Kirsten Bobrow, Sheikh Mohammed Shariful Islam, Clara K Chow, Ralph Maddison, Robyn Whittaker, Andrew J Farmer
JMIR mHealth and uHealth.2019; 7(3): e12191. CrossRef Mental disorders and medical comorbidities: Association rule mining approach
Chia-Hui Wang, Tzu-Yin Lee, King-Cheung Hui, Min-Huey Chung
Perspectives in Psychiatric Care.2019; 55(3): 517. CrossRef Type 2 diabetes mellitus and multiple chronic diseases
Nailya S. Asfandiyarova, Olga V. Dashkevich, Natalya V. Doroshina, Ekaterina I. Suchkova
Diabetes mellitus.2019; 21(6): 455. CrossRef Development of a new metric to identify rare patterns in association analysis: The case of analyzing diabetes complications
Saeed Piri, Dursun Delen, Tieming Liu, William Paiva
Expert Systems with Applications.2018; 94: 112. CrossRef Anesthesia in children with comorbid pathology - clinical assessment of the most common pathological conditions in the practice of anesthesiologist
Y M Babina
Pain medicine.2018; 3(3): 33. CrossRef Effects of dipeptidyl peptidase-4 inhibitors on blood pressure in patients with type 2 diabetes
Xiaodan Zhang, Qingyu Zhao
Journal of Hypertension.2016; 34(2): 167. CrossRef An Application of Association Rule Mining to Extract Risk Pattern for Type 2 Diabetes Using Tehran Lipid and Glucose Study Database
Azra Ramezankhani, Omid Pournik, Jamal Shahrabi, Fereidoun Azizi, Farzad Hadaegh
International Journal of Endocrinology and Metabolism.2015;[Epub] CrossRef Predicting Metabolic Syndrome Using the Random Forest Method
Apilak Worachartcheewan, Watshara Shoombuatong, Phannee Pidetcha, Wuttichai Nopnithipat, Virapong Prachayasittikul, Chanin Nantasenamat, Naval Vikram
The Scientific World Journal.2015;[Epub] CrossRef Extending Association Rule Summarization Techniques to Assess Risk of Diabetes Mellitus
György J. Simon, Pedro J. Caraballo, Terry M. Therneau, Steven S. Cha, M. Regina Castro, Peter W. Li
IEEE Transactions on Knowledge and Data Engineering.2015; 27(1): 130. CrossRef Prevalence and comorbidities of known diabetes in northeastern Italy
Francesca Valent, Silvia Tillati, Loris Zanier
Journal of Diabetes Investigation.2013; 4(4): 355. CrossRef
|