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INTRODUCTION

Heart failure with preserved ejection fraction (HFPEF), 
a clinical syndrome where heart failure (HF) exists in 
the presence of normal or near-normal left ventricular 
ejection fraction (LVEF), accounts for up to half of all 
HF patients. However, in contrast to heart failure with 
reduced ejection fraction (HFREF), where therapeutic 
advances have significantly improved outcomes over the 
last two decades, there has been little progress in the de-
velopment of effective, evidence-based therapies for HF-
PEF. Guideline recommendations for the management 
of HFPEF have been unchanged for a decade and em-
pirical, largely confined to the use of diuretics and treat-
ment of comorbidities [1,2]. Disappointing results from 
large phase III HFPEF clinical trials, including the Irbe-
sartan in Heart Failure with Preserved Ejection Fraction 
Study (I-PRESERVE) [3], Perindopril for Elderly People 

with Chronic Heart Failure (PEP-CHF) [4], Candersartan 
in Heart Failure-Assessment of Reduction in Mortali-
ty and Morbidity-Preserved Study (CHARM-Preserved) 
[5], and Treatment of Preserved Cardiac Function Heart 
Failure with an Aldosterone Antagonist (TOPCAT) [6], 
underscore our incomplete understanding of this dis-
ease. At the same time, HFPEF is becoming the predom-
inant form of HF in aging societies [7], and represents a 
huge public health burden worldwide. Clearly, a break-
through is urgently needed to address what is increas-
ingly recognized as the largest unmet need in cardiology 
today—HFPEF. 

BREAKTHROUGH CONCEPT IN HFPEF

A novel HFPEF paradigm emerges from recent studies
A lack of myocardial tissue obtained from HFPEF pa-
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tients has hampered research in HFPEF pathophysiol-
ogy for decades, partly accounting for the slow progress 
in HFPEF research. This is compounded by the absence 
of truly representative experimental models of HFPEF, 
given the heterogeneity of the condition. Over the last 
decade, investigators have obtained myocardial speci-
mens from HFPEF patients, either through endomyo-
cardial biopsies or autopsies. The studies conducted 
provided important insights into the structural and 
functional abnormalities seen in HFPEF. The investi-
gators found remodeling involving both the myocar-
dium and extracellular matrix. There was significant 
hypertrophy of the cardiomyocytes and interstitial fi-
brosis [8-10]. On a functional level, this translated into 
increased myocardial stiffness [11] and incomplete myo-
cardial relaxation [12]. In addition, there was evidence of 
increased inflammation and oxidative stress. Wester-
mann and colleagues [10] showed the presence of profi-
brotic inflammatory cells in the myocardium of HFPEF 
patients; this was accompanied by an accumulation of 
cardiac collagen and correlated with the extent of dia-
stolic dysfunction. Another group of investigators found 
increased nitrotyrosine content in the myocardium of 
HFPEF patients compared with patients with HFREF 
and aortic stenosis; this was accompanied by lower cyclic 
guanosine monophosphate (cGMP) activity and higher 
myocardial resting tension, suggesting reduced nitric 
oxide (NO) bioavailability in an altered redox state [9]. 

Based on these data on myocardial remodeling and 
dysfunction, as well as increasing awareness of the im-
portant role of comorbidities in the pathophysiology of 
HFPEF [13,14], a novel HFPEF paradigm was proposed 
[15]: comorbidities lead to systemic inflammation, in-
creased oxidative stress and generalized endothelial 
dysfunction. At the level of the myocardium, there is 
coronary microvascular endothelial inflammation and 
dysfunction, as well as dysregulation of cardiac endo-
thelium-cardiomyocyte signaling, eventually culminat-
ing in the structural and functional alterations seen in 
the cardiomyocytes and extracellular matrix. Beyond 
the myocardium, endothelial dysfunction underlies the 
vasomotor dysfunction seen in various circulatory beds, 
leading to abnormal ventricular-vascular coupling, pul-
monary hypertension, renal dysfunction, and exercise 
intolerance (Fig. 1) [16]. This novel paradigm not only 
ascribed a central role to the endothelium in the patho-

physiology of HFPEF, but supports the notion that HF-
PEF is indeed a systemic disorder.

The endothelium plays an important role in cardio-
vascular homeostasis
The endothelium plays an obligatory role in cardiovas-
cular homeostasis. Endothelial cells regulate vascular 
permeability, adjust vasomotor tone, maintain blood 
fluidity, and control inflammatory processes via the ex-
pression, activation and release of numerous bioactive 
factors. The regulatory effects of the endothelium ex-
tend beyond the vasculature to include the regulation 
of myocardial structure and function: endothelial cells 
modulate inotropy, lusitropy, and chronotropy via their 
interaction with cardiomyocytes [17]. Numerous endo-
thelial-derived factors have been identified to date, with 
NO being the prototype of endothelial-derived relaxing 
factor.

The main signaling pathway of NO is through the 
activation of soluble guanylate cyclase (sGC), which, in 
turn, produces cGMP, a downstream mediator. The pro-
duction of cGMP is not confined to this pathway and is 
also regulated by the natriuretic peptide (NP)-particulate 
guanylate cyclase (pGC)-cGMP pathway. This results in 
the production of two spatially and functionally distinct 
cGMP pools [18,19]. Intracellular cGMP, in turn, acti-
vates protein kinases (protein kinase A [PKA] and protein 
kinase G [PKG]) and gated ion channels, and regulates 
phosphodiesterases. The physiologic actions of cGMP 
differ depending on the site of activation. The activity 
of cGMP is terminated by the degradation of GMP, cata-
lyzed primarily by phosphodiesterase 5 (PDE-5). 

In the vasculature, NO-sGC-cGMP signaling results 
in the phosphorylation of various membrane proteins 
residing in the sarcoplasmic reticulum, including phos-
pholamban [20], 1,4,5-inositol triphosphate (IP3) recep-
tor-associated cGMP kinase substrate (IRAG) [21] and 
calcium (Ca2+)-dependent potassium (K+) channels [22]. 
This results in reduced intracellular Ca2+ concentration 
through sequestration of intracellular Ca2+ and reduced 
influx of extracellular Ca2+ into the sarcoplasmic reticu-
lum. Consequently, there is decreased formation of the 
Ca2+-calmodulin myosin light chain kinase complex, 
favoring vasodilatation [23,24]. In addition, NO controls 
the cellular milieu within the vessel wall; by regulating 
the synthesis, expression and activity of cytokines, adhe-
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sion molecules and growth factors, it modulates platelet 
aggregation [25], inflammation [26], and smooth muscle 
proliferation [27]. 

The effect of NO-sGC-cGMP signaling on cardiac 
inotropy is bimodal [28,29]. At low and physiological 
concentrations, cGMP inhibits the activity of PDE III 
and promotes the intracellular accumulation of cyclic 
adenosine monophosphate. This, is turn, activates PKA, 
leading to the opening of sarcoplasmic ryanodine re-
ceptors (Ry/R) and sarcolemmal voltage-operated Ca2+ 
channels, increased intracellular Ca2+ concentration and 
improved inotropy [30]. At higher concentrations, cGMP 
improves lusitropy mainly via the activation of PKA and 
PKG, with phosphorylation of downstream mediator 
proteins, including troponin I and titin. Phosphory-
lation of troponin I by PKG reduces cardiac myofila-
ments’ sensitivity to Ca2+ and promotes diastolic cross-
bridge detachment, leading to a rightward shift in the 

length-tension relationship of the cardiomyocytes [31]. 
Similarly, phosphorylation of the cytoskeletal protein 
titin by PKA and PKG its compliance; thus, attenuating 
myocardial stiffness and improving lusitropy myocardi-
al stiffness and improving lusitropy [32]. 

NO regulates mitochondrial respiration, promotes 
free fatty acids as the preferred energy substrate and 
protects against excessive oxygen consumption. These 
effects on myocardial energetics complement its effects 
on lusitropy by limiting myocardial energy wastage in 
late systole due to the contraction against reflected arte-
rial pressure waves [33].

Endothelial dysfunction plays a central role in the 
pathophysiology of HFPEF 
Cardiovascular risk factors and noncardiac comorbidi-
ties are prevalent in HFPEF [34], and induce a systemic 
proinflammatory state. Indeed, circulating levels of in-

Risk factors
Pulmonary 
hypertension

Systemic
Vascular E: smooth muscle cells
(including coronary vasculature)

& peripheral endothelium
Capillary E: renal glomerular cells, tubular cells

Capillary E: skeletal muscle cells
Capillary E: hepatocytes

Left ventricle 
remodelling 
& diastolic 
dysfunction

Arterial impedance
Renal dysfunction
Exercise intolerance

Cardiac endothelium
Capillary E: cardiomyocytes

Endocardial E: cardiomyocytes

Pulmonary 
endothelium

Vascular E: smooth muscle cells
Capillary E: alveolar endothelial cells  

Capillary endothelial cross-talk 
with local tissue cells

→ Direct control of organ function

Vascular endothelial cross-talk 
with smooth muscle cells

→ regulation of blood pressure, 
vessel capacity and flow

Figure 1. Central role of the endothelium in the pathophysiology of heart failure with preserved ejection fraction. 
The endothelium plays an obligatory role in cardiovascular homeostasis. While the vascular endothelium plays an 
important role in the regulation of vasomotor tone, the capillary endothelial cells, which form the largest number of 
endothelial cells in the body, communicates closely with adjacent organ-specific cells. Proinflammatory risk factors 
induce generalized endothelial dysfunction, leading to myocardial dysfunction, systemic hypertension, pulmonary 
hypertension, renal dysfunction, and exercise intolerance. Adapted from Lim et al. [16], with permission from Oxford 
University Press.
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flammatory cytokines such as tumor necrosis factor α 
(TNF-α), interleukin 6 (IL-6) [35], pentraxin 3 [36], and ST 
2 [37] are higher in HFPEF patients. In the myocardium, 
this leads to the upregulation of coronary microvascular 
endothelial adhesion molecules, migration of activated 
circulating leukocytes and increased production of re-
active oxygen species (ROS) [15]. The resultant oxidative 
stress causes endothelial inflammation and dysfunction, 
impaired NO-sGC-cGMP signaling and reduced activity 
of downstream mediator proteins PKG and PKA. Con-
sequently, there is an increase in intracellular diastolic 
Ca2+, enhanced sensitivity of troponin C to Ca2+ and hy-
pophosphorylation of titin. This affects myocardial lus-
itropy, with delayed myocardial relaxation and increased 
myocardial stiffness. This is supported by rodent stud-
ies that demonstrated a leftward shift of the left ventricle 
(LV) pressure-volume relationship and worsened LV di-
astolic function when NO production was inhibited [38]. 
PKG is also believed to regulate prohypertrophic stimuli 
and limit cardiomyocyte size, an observation supported 
by numerous clinical and animal studies [9,39,40]. The 
final product of a deficient NO-sGC-cGMP pathway is a 
concentrically remodeled LV with diastolic dysfunction. 

The composition of the myocardial interstitial matrix 
is likewise altered in HFPEF, with increased deposition 
of type I collagen and greater collagen cross-linking 
[41]. Monocytes migrating through the inflamed endo-
thelium secrete transforming growth factor β, which 
promotes the differentiation of fibroblasts into myofi-
broblasts [10]. This is further aided by the growth-pro-
moting effects of angiotensin II, aldosterone [42], and 
endothelin-1, whose actions are now unopposed due to 
low NO bioavailability [39]. 

Beyond the myocardium, endothelial dysfunction and 
deficient NO-sGC-cGMP signaling underlie vasomotor 
dysfunction in various circulatory beds—systemic, pul-
monary, renal, and muscular. NO deficiency promotes 
systemic vasoconstriction and increases arterial imped-
ance, leading to increased LV afterload and abnormal 
ventricular-vascular coupling.

Pulmonary hypertension is highly prevalent in HF-
PEF [43] and correlates with peripheral endothelial dys-
function [44], supporting the hypothesis that pulmonary 
vascular endothelial dysfunction leads to pulmonary va-
soconstriction, increased pulmonary vascular resistance 
and elevated pulmonary artery pressures with eventual 

right ventricular failure [45]. 
Renal dysfunction is also highly prevalent in HFPEF, 

and impaired NO-sGC-cGMP signaling is thought to 
underlie renal vasomotor dysfunction and cardiorenal 
syndrome: NO modulates renal glomerular and medul-
lary blood flow, tubular transport, and tubuloglomeru-
lar feedback. The activation of sGC in rats with chronic 
kidney disease improved renal function (as measured by 
creatinine clearance) and prevented fibrosis (both in the 
target organ and interstitium) [46]. In a canine model of 
HF, stimulation of sGC enzyme not only improved car-
diac function (increased cardiac output, reduced mean 
capillary wedge and pulmonary arterial pressures), but 
also maintained renal function (assessed by glomerular 
filtration rate) without activation of the renin-angioten-
sin-aldosterone system [47]. 

Endothelial dysfunction involving both the resistance 
and conductive vessels, as well as the microvasculature 
in skeletal muscles may underlie exercise intolerance, 
a hallmark of HFPEF. Indeed, Borlaug and colleagues 
[48] showed that peripheral endothelial dysfunction and 
impaired exercise-induced augmentation in peripheral 
blood flow occurred in conjunction with exercise intol-
erance in HFPEF patients. In addition, microvascular 
rarefaction is present in the thigh muscles of HFPEF pa-
tients, where the capillary density is approximately half 
that of controls, and this correlated with poorer exercise 
capacity [49]. It is worth noting that endothelial dysfunc-
tion may not be the only player in exercise intolerance 
in HFPEF patients, as chronotropic incompetence and 
pulmonary hypertension with exercise-induced elevat-
ed left ventricular filling pressures are also likely to be 
contributors to poor exercise capacity in these patients.

Once HFPEF is established, the accompanying proin-
flammatory state and neurohormonal activation lead to 
increased production of ROS and further attenuation 
of endothelial function. This chronic deficiency in NO-
sGC-cGMP signaling further propagates the progres-
sion of HF.

Evidence of endothelial dysfunction in HFPEF
The presence of endothelial dysfunction in HFPEF has 
been demonstrated in numerous studies (Table 1). Im-
paired endothelial function is present in up to 40% of 
HFPEF patients [48], afflicting both the conduit vessels 
and microvasculature. Microvascular rarefaction, and 
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consequent endothelial inflammation and dysfunction, 
have been shown in both the myocardium [50] and thigh 
muscles [49], the former being inversely correlated with 
myocardial fibrosis while the latter correlates with ex-
ercise intolerance. In a separate study involving 28 HF-
PEF patients, peripheral endothelial dysfunction was 
associated with pulmonary hypertension [44]. Beyond 
these, endothelial dysfunction is an adverse prognostic 
marker, independently predicting future cardiovascular 
events [51,52].

HFPEF is a systemic disorder, with comorbidities 
playing important roles
HFPEF patients are characterized by advanced age and a 
myriad of cardiometabolic and extracardiac comorbid-
ities, including hypertension, diabetes mellitus (DM), 
obesity, anemia, chronic lung disease, and chronic renal 
disease. These comorbidities are generally proinflam-
matory, and evidence shows both their association with 
HFPEF as well as endothelial dysfunction.

While the association between DM and atherosclerot-
ic cardiovascular disease has long been established, it is 
only in recent years that the association between DM 
and nonischemic HF has gained prominence. Regard-
less of LVEF, there is a high prevalence of diastolic dys-
function in diabetics [53]. The increased LV stiffness seen 
amongst diabetics is predominantly due to increased 
resting tension, without appreciable cardiomyocyte hy-
pertrophy [54]. This unique form of DM cardiomyopathy 
is believed by some to represent stage B HFPEF [55]. DM 
is highly prevalent amongst HFPEF patients and is asso-
ciated with increased production of ROS and impaired 
antioxidant defense mechanisms. These lead to vascu-
lar inflammation with increased levels of inflammato-
ry markers, including IL-6, vascular cellular adhesion 
molecule-1 (VCAM-1) and monocyte chemoattractant 
protein. The ensuing endothelial dysfunction and defi-
cient NO-sGC-cGMP signaling is generalized, afflicting 
the central cardiac endothelium as well as the peripher-
al endothelium. In support of the hypothesis that defi-
cient NO-sGC-cGMP signaling in DM plays a role in the 
pathogenesis of HFPEF, van Heerebeek and colleagues 
[53] demonstrated that administration of PKA improved 
cardiomyocyte resting tension and diastolic function in 
diabetic HFPEF patients. 

As with DM, a significant proportion of HFPEF pa-
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tients are obese. In fact, the prevalence of HFPEF is ris-
ing in tandem with the obesity epidemic. Central obe-
sity interacts with aging in women, resulting in greater 
LV stiffness. Obesity results in structural and functional 
changes in the microvasculature, which are attributable 
to endothelial dysfunction [56]. Microvascular rarefac-
tion and remodeling have been shown in skeletal mus-
cle circulation of obese rats [57] and humans [58]. Func-
tionally, there is an impaired endothelium-dependent 
vasodilatory response amongst the skin capillaries and 
resistance vessels [59-61].

Hypertension is a prominent feature amongst HFPEF 
patients, with a prevalence of 60% to 88% [4,5,62,63]. Not 
only is it more commonly seen in HFPEF compared 
with HFREF, but HFPEF patients also have more severe 
hypertension. Hypertension increases LV afterload, re-
sulting in LV hypertrophy, abnormal ventricular-vascu-
lar coupling, myocardial fibrosis, and arterial stiffness. 
It is an independent predictor of diastolic dysfunction 
[64]. A unique form of hypertension, pre-eclampsia, has 
been linked to subsequent development of HFPEF in 
women [65]. There is a synergistic interaction between 
hypertension and DM, conferring additional risk of HF 
in these patients. Hypertension is also proinflammato-
ry, and endothelial dysfunction in hypertensive patients 
correlates with markers of inflammation, including 
TNF-α, IL-6, E-selectin, VCAM-1, intercellular adhesion 
molecule 1, and C-reactive protein [66,67]. As in obesity, 
structural and functional changes in the microvascula-
ture of hypertensives are observed [68]. Microvascular 
rarefaction is observed in various circulatory beds, and 
an increased wall-to-lumen ratio is seen in resistance 
vessels [69]. Functionally, the balance is shifted in favor 
of vasoconstriction. 

Cumulatively, evidence strongly supports the link be-
tween comorbidities, inflammation and an altered re-
dox state, with subsequent endothelial dysfunction in 
the pathogenesis of HFPEF.

Ethnic differences in endothelial function exist 
amongst patients
The impact of comorbidities seems more pronounced 
in Asians than in Caucasians. The wealth of epidemio-
logical data available on HFPEF comes mainly from the 
United States and Europe, with limited data available 
on Asians. Currently, the best available data comparing 

the clinical characteristics of HFPEF among Asians and 
Caucasians come from the Acute Decompensated Heart 
Failure National Registry (ADHERE), in which the Unit-
ed States registry is compared against the International 
(comprising Asia-Pacific and Latin American countries) 
registry [70]. HFPEF patients from Asia-Pacific and Latin 
America tend to be younger and have a lower comorbid-
ity burden. Yet, they tend to have more severe clinical 
presentations, with a longer length of hospitalization 
and higher rates of mechanical ventilation, the use of 
inotropic agents and cardiopulmonary resuscitation. 

One plausible explanation for these observations is 
the presence of ethnic differences in endothelial func-
tion. Endothelial function is lower in Asians than in 
Caucasians, regardless of the birth country, implying 
the presence of genetic susceptibility rather than pure 
environmental influence [71]. Ethnic differences in en-
dothelial function have similarly been demonstrated in 
HF patients: Shantsila and colleagues [72] showed that 
South Asians with HFREF have the worst microvascular 
endothelial function compared with Caucasians and Af-
rican Caribbeans with HFPEF. 

THERAPEUTIC IMPLICATIONS

The aging population worldwide and rising prevalence 
of cardiovascular risk factors in Asia and Africa are fuel-
ing the HF epidemic, particularly HFPEF. This worsen-
ing epidemic, coupled with the lack of evidence-based 
therapies for HFPEF underscore the urgency of the sit-
uation. The emergence of this new paradigm has led to 
numerous studies evaluating therapies targeting various 
levels of the NO-sGC-cGMP pathway, and opened up 
the possibility of novel therapies that may indirectly in-
fluence this pathway. Some of these therapies have been 
tested in clinical trials, whereas others are ongoing. 

Recent neutral trials
Sildenafil belongs to a group of drugs known as PDE-
5 inhibitors, which enhance intracellular cGMP con-
centration and activity, thereby improving endothelial 
function [73]. PDE-5 inhibitors are selective pulmonary 
vasodilators that are indicated for the management of 
pulmonary arterial hypertension. In recent years, silde-
nafil has been explored for use in the management 

www.kjim.org


7

Lim SL and Lam CS. Breakthrough in heart failure with preserved ejection fraction

www.kjim.orghttp://dx.doi.org/10.3904/kjim.2016.31.1.1

of secondary pulmonary hypertension secondary to 
chronic HF. Guazzi and colleagues [74] randomized 44 
patients with HFPEF and pulmonary hypertension into 
the placebo or sildenafil arm. Following 1 year of ther-
apy, patients randomized to the sildenafil arm showed 
improvements in LV filling pressures and pulmonary 
pressures; these were accompanied by improvements in 
right and left ventricular function. Findings were less 
positive when the use of sildenafil was extended to a 
phase III, multicenter study, the Phosphodiesterase-5 
Inhibition to Improve Clinical Status and Exercise Ca-
pacity in Heart Failure with Preserved Ejection Fraction 
(RELAX) trial [75]. There was no significant improvement 
in exercise tolerance, quality of life, hemodynamics, or 
clinical status after 24 weeks of treatment with sildena-
fil. A new, long-acting PDE-5 inhibitor, udenafil, is be-
ing tested in a 12-week clinical trial (Udenafil Therapy 
to Improve Symptomatology, Exercise Tolerance and 
Hemodynamics in Patients with Heart Failure with Pre-
served Ejection Fraction: Phase III, Randomized, Dou-
ble Blind, Placebo-controlled Trial [ULTIMATE-HFpEF 
Trial], ClinicalTrials.gov Identifier: NCT01599117). 

Another group of drugs that was thought to improve 
endothelial function yet yielded neutral findings in clin-
ical trials is the mineralocorticoid antagonists (MRAs). 
It is well-known that activation of the renin-angioten-
sin-aldosterone system promotes sodium retention and 
fibrosis of the myocardium and vasculature. It is now 
recognized that aldosterone also contributes to endo-
thelial dysfunction. Aldosterone reduces the vasodilato-
ry response to acetylcholine in animal and human stud-
ies [76,77], and endothelium-dependent vasodilatation is 
restored following administration of MRAs [78-80]. Al-
dosterone contributes to endothelial dysfunction by re-
ducing NO production and increasing oxidative stress. 
One small study involving 44 HFPEF patients suggested 
that MRAs may benefit these patients [81].

The Aldosterone receptor Blockade in Diastolic Heart 
Failure (ALDO-HF) trial was a multicenter, randomized, 
double-blind trial that randomized 422 HFPEF patients 
into the spironolactone or placebo arm [82]. At the end of 
12 months, spironolactone improved echocardiographic 
indices of LV diastolic function but failed to improve 
exercise tolerance and quality of life. 

A larger study, the TOPCAT trial, compared spirono-
lactone versus placebo in 3,445 HFPEF patients regarding 

their clinical outcomes [6]. Although this study failed to 
significantly improve the primary endpoint, a compos-
ite outcome of cardiovascular mortality, HF hospitaliza-
tions and aborted cardiac arrest, there was a significant 
reduction in HF hospitalizations in the spironolactone 
arm, suggesting that spironolactone had some benefits 
in morbidity reduction. In addition, a post hoc analysis 
of the data demonstrated striking regional variations 
in the outcomes, in which spironolactone significantly 
improved clinical outcomes in Americas but not in in-
dividuals from Georgia or Russia [83]. 

Ongoing studies
Apart from the concluded studies, there are several on-
going trials targeting the pathway at the NO, sGC, and 
cGMP levels. NO enhances cardiac lusitropy and myo-
cardial energetics in a synergistic fashion [28,33,84]. In-
fusion of NO donors, such as nitroprusside, has been 
shown to improve LV diastolic function and peak sys-
tolic pressure [85]. The benefits of organic nitrates were 
largely demonstrated in HFREF patients, with improve-
ments in mortality, HF hospitalizations and LV function 
[86,87]. A recent study conducted in 17 HFPEF patients 
demonstrated an improvement in exercise tolerance 
following a single dose of inorganic nitrate [88]. This 
was associated with improvements in peak oxygen con-
sumption, exercise-induced augmentation of peripher-
al blood flow and endothelial function, along with the 
attenuation of arterial wave reflections. A larger phase 
II study is currently underway to evaluate the effects of 
organic nitrates and hydralazine in HFPEF patients (Ef-
fect of Organic Nitrates and Hydralazine on Wave Re-
flections and Left Ventricular Structure and Function in 
Heart Failure with Preserved Ejection Fraction, Clinical-
Trials.gov Identifier: NCT01516346). 

There are two isoforms of sGC that differ by the ox-
idative state of the prosthetic ferrous heme group. A 
reduced ferrous heme group renders sGC sensitive to 
NO, allowing for NO-dependent sGC activation. When 
oxidized, the heme group dissociates from sGC, result-
ing in a dysfunctional, NO-insensitive enzyme [89]. sGC 
stimulators activate the reduced, NO-sensitive form of 
sGC. These compounds overcome the NO-deficient 
state by mimicking NO. On the other hand, sGC acti-
vators work independently of NO bioavailability. They 
specifically target the NO-insensitive sGC, activating the 
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enzyme by occupying the free sGC heme-binding site. 
Data from animal studies have demonstrated that both 
sGC stimulators and activators have potent vasodilatory 
and blood pressure-lowering effects, in addition to car-
dio- and reno-protective properties [90-93].

Riociguat was the first oral sGC stimulator studied in 
HF patients. The Acute Hemodynamic Effects of Rio-
ciguat in Patients with Pulmonary Hypertension Asso-
ciated with Diastolic Heart Failure (DILATE-1) trial was 
a randomized, placebo-controlled, parallel group IIa 
study evaluating the effects of riociguat in HFPEF pa-
tients with pulmonary hypertension [94]. A single dose of 
riociguat (2 mg) improved cardiac output, and decreased 
afterload and right ventricular dimensions. However, 
there was no significant change in pulmonary pressure 
or pulmonary vascular resistance. Other phase II stud-
ies are ongoing. Part of the Soluble Guanylate Cyclase 
stimulator Heart Failure Studies (SOCRATES) program 
(ClinicalTrials.gov Identifier: NCT101951638), SOCRA-
TES-PRESERVED, is a randomized, double-blind, paral-
lel-group study evaluating the pharmacodynamics, phar-
macokinetics and safety profile of vericiguat (BAY1021189) 
in hospitalized HFPEF (LVEF ≥ 45%) patients following 
initial stabilization. 

NPs act in parallel with NO to increase intracellular 
cGMP levels. The degradation of NPs occurs via two 
mechanisms—enzymatic breakdown by neprilysin and 
receptor internalization followed by lysosomal degra-
dation. LCZ696 is a novel molecule that combines the 
neprilysin inhibitor prodrug AHU377 with the angioten-
sin II receptor blocker (ARB) valsartan [95]. Inhibition of 
neprilysin enhances NP-pGC-cGMP signaling, while 
inhibition of the angiotensin II receptor suppresses the 
detrimental activation of the renin-angiotensin-aldo-
sterone. The phase II Prospective Comparison of ARNI 
(angiotensin receptor neprilysin inhibitor) with ARB 
on Management of Heart Failure with Preserved Ejec-
tion Fraction (PARAMOUNT) trial, which compared the 
LCZ696 against valsartan for 12 weeks in 301 patients, 
yielded some results [96]. At 12 weeks, there was a signif-
icant improvement in the levels of N-terminal prohor-
mone of brain natriuretic peptide in the LCZ 696 group 
that was not sustained at 36 weeks. Left atrial dimensions 
and volumes were significantly reduced, albeit without a 
concomitant improvement in LV diastolic indices, at 36 
weeks in the LCZ696 group. A larger phase III trial (Effi-

cacy and Safety of LCZ696 Compared with Valsartan, on 
Morbidity and Mortality in Heart Failure Patients with 
Preserved Ejection Fraction [PARAGON-HF], Clinical-
Trials.gov Identifier: NCT01920711) is ongoing, in which 
LCZ696 will be compared with valsartan on clinical end-
points in HFPEF.

Promising pharmacological and nonpharmacologi-
cal interventions
The proposal of this novel HFPEF paradigm where 
substantial weight is attributed to comorbidities and 
systemic inflammation has led to novel therapeutic ap-
proaches being considered and tested.

Statins possess anti-inflammatory properties and 
could potentially exert a stabilizing effect on the endo-
thelium. The therapeutic effects of statins are well-estab-
lished in the management of dyslipidemia and coronary 
artery disease, but less so in HF. Although statins reduce 
myocardial stiffness and fibrosis in experimental mod-
els and HFPEF patients, available observational studies 
have yielded mixed findings regarding the mortality 
effects in this group of patients. A recent meta-analysis 
involving almost 18,000 HFPEF patients showed a 40% 
reduction in mortality rate with statin use [97]. None-
theless, its beneficial effects need to be confirmed in a 
properly designed randomized clinical trial. 

The formation and accumulation of advanced glyca-
tion end products (AGEs), through the interaction of 
carbohydrates and proteins, occur in DM; this contrib-
utes to the development of diastolic dysfunction and 
subsequent HFPEF directly by increasing myocardial 
stiffness through the cross-linking of collagen, or in-
directly by increasing oxidative stress and reducing NO 
bioavailability [98]. Plasma levels of AGEs predict worse 
clinical outcomes in HFPEF [99]. AGE cross-link break-
ers, such as alagebrium (ALT-711), have been shown to 
improve left ventricular diastolic function and quality of 
life after 16 weeks of follow-up in one small study [100]. 
A larger phase II study (The Beginning A Randomized 
Evaluation of the AGE Breaker Alagebrium in Diastolic 
Heart Failure [BREAK-DHF 1], ClinicalTrials.gov Identi-
fier: NCT00662116) was designed to evaluate the efficacy 
of alagebrium on exercise capacity in HFPEF patients; 
however, it was terminated early due to financial con-
straints. Presently, another study is underway evaluating 
the effect of alagebrium on myocardial stiffness in sed-
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entary or active elderly volunteers (The Effect of Exercise 
and Alagebrium on the Diastolic Function of the Heart 
[AGE], ClinicalTrials.gov Identifier: NCT01014572). 

Exercise intolerance is a hallmark of HFPEF, and it is 
postulated that exercise training could benefit HFPEF 
patients through improvements in endothelial func-
tion [101]. Exercise increases endothelial shear stress, 
enhancing NO release and NO-mediated vasodilatation 
in HF. In addition, it indirectly improves endothelial 
function and NO bioavailability through its anti-inflam-
matory effects, in part by influencing circulating levels 
of insulin, glucose and cytokines. Exercise training has 
been shown to improve exercise tolerance, quality of life 
and indices of LV diastolic function in HFPEF patients 
[102,103]. The benefits were initially assumed to be sec-
ondary to improvements in endothelial function. How-
ever, a study carried out by Kitzman and colleagues [104] 
showed no significant change in endothelial function 
(assessed by brachial artery flow-mediated dilatation), 
despite improvements in peak oxygen consumption 
following exercise training. One possible reason is that 
the duration of exercise training in this study was in-
sufficient to effect changes in endothelial function. Ad-
ditionally, conduit arterial endothelial function is not 
synonymous with microvascular endothelial function, 
and it remains plausible that exercise training positively 
affects microvascular reserve without obvious changes 
in conduit arterial endothelial function. Finally, it is 
noteworthy that exercise intolerance in HFPEF is mul-
tifactorial, with contributions from exercise-induced 
elevations in LV filling pressures and pulmonary pres-
sures, as well as impaired augmentation of the heart rate 
and stroke volume during exercise in addition to endo-
thelial dysfunction. 

Planned weight loss in obese patients, either via life-
style modifications or surgical methods, may mitigate 
obesity-related cardiovascular complications. Reducing 
excess adiposity reduces inflammation, and favorably 
influences endothelial function and insulin sensitivi-
ty [105,106]. Impairment of macrovascular endothelial 
function has been shown following weight gain in nor-
mal-weight adults; this phenomenon is reversible once 
the additional weight is shed [107]. Beyond these, weight 
reduction has also been shown to improve cardiomyo-
cyte hypertrophy and LV diastolic dysfunction in obese 
individuals [108-110], which may potentially retard the 

progression to symptomatic HFPEF.

CONCLUSIONS

HFPEF is an important public health problem of high 
morbidity and mortality. Although significant inroads 
have been made regarding its pathogenesis, the results 
from neutral trials remind us of the gaps in our under-
standing of this heterogeneous syndrome. With HFPEF 
prevalence increasing worldwide, including the devel-
oping nations, the race for effective therapies has never 
been more urgent. 
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