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INTRODUCTION

New-onset diabetes after transplantation (NODAT) is 
a serious and common complication after solid organ 
transplantation. This clinical dilemma increases the risk 
of cardiovascular disease, infection (cytomegalovirus 
and hepatitis C virus), and graft damage (graft rejection 
and loss) and decreases the patient and graft survival 
rates. Additionally, rejection of the graft affects the inci-
dence of NODAT, resulting in a vicious circle [1-4]. De-
spite strict pre- and post-transplantation screening, the 
incidence of NODAT remains extremely high. NODAT 
reportedly occurs in 2.5% to 44.2% of liver transplant re-
cipients [5,6], 4% to 40% of heart transplant recipients 
[7], and 30% to 47% of lung transplant recipients [8,9]. A 

multicenter observational study of 527 kidney transplant 
recipients (KTRs) reported that the incidence NODAT 
is 5.5% and 8.4% at 1 and 2 years post-transplantation, 
respectively [10]. Another long-term study showed that 
60.2% of KTRs developed maintenance NODAT and 
54.7% of KTRs manifested transient post-transplanta-
tion hyperglycemia among 176 KTRs from 2001 to 2012 
[11]. The overall incidence of NODAT in patients who 
undergo solid organ transplantation is 2% to 60%. This 
wide variation is dependent on each study’s definition 
of NODAT, which is based on different diagnostic cri-
teria, observation periods, presence of risk factors, and 
types of immunosuppressants used.

Multiple risk factors are associated with the develop-
ment of NODAT and are broadly classified into two cat-
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egories: (1) nonmodifiable risk factors, including old age 
(> 40 years) [12,13], ethnicity (African-American and His-
panic) [14], positive family history of diabetes mellitus 
(DM) [13], human leukocyte antigen mismatch, donor 
source, occurrence of an acute rejection episode, genetic 
factors, and autosomal dominant polycystic kidney dis-
ease [15,16]; (2) modifiable risk factors, including individ-
ualized immunosuppressants (tacrolimus, corticoste-
roids, and sirolimus) [17,18], obesity (body mass index ≥ 
30 kg/m2) or other components of metabolic syndrome 
[19], viral infections (cytomegalovirus and hepatitis C 
virus) [20-22], and peritoneal dialysis [23]. The NODAT 
definition appears to be important for delineating pre-
ventive strategies. In 2003, the World Health Organiza-
tion and the American Diabetes Association refined the 
NODAT definition based on three criteria [24]: in addi-
tion to symptoms of DM, the patient must have a ca-
sual plasma glucose concentration of ≥ 200 mg/dL (11.1 
mmol/L), fasting plasma glucose concentration of ≥ 126 
mg/dL (7.0 mmol/L), or a 2-hour plasma glucose (2HPG) 
concentration of ≥ 200 mg/dL (11.1 mmol/L) during an 
oral glucose tolerance test. The 2009 Kidney Disease 
Improving Global Outcomes clinical practice guidelines 
added hemoglobin A1c (HbA1c) as a screening criterion 
for diagnosing NODAT [25].

Management of NODAT requires a multifaceted ap-
proach because it affects multiple organs and the al-
lograft itself. Pre- and post-transplantation screening 
based on the glucose profile or glycosylated hemoglo-
bin is strongly recommended. Strict control to main-
tain normoglycemia remains the mainstay of treatment 
for transplant recipients who develop DM with overt 
micro- and macroalbuminuria. In addition, use of re-
nin-angiotensin system blockers and switching immu-
nosuppressants to more adequate regimens are effective 
for minimizing the impact of NODAT [26]. 

Dipeptidyl peptidase-4 (DPP4) inhibitors are selec-
tive inhibitors of DPP4, which is the key enzyme that 
regulates degradation of the two major incretins gluca-
gon-like peptide-1 (GLP-1) and glucose inhibitory pep-
tide (GIP). Therefore, DPP-4 inhibitors are now widely 
used to treat type 2 diabetes mellitus (T2DM) without 
weight gain or hypoglycemic risk. However, DPP4 is a 
serine protease that cleaves incretins and many other 
non-incretin peptides. Therefore, although they may 
be used for glucose control, DPP4 inhibitors may have 

pleiotropic effects, such as anti-inflammatory, antiapop-
totic, and immunomodulatory actions. The protective 
effects of DPP4 inhibitors are mirrored in various renal 
injuries [27-29], DM [30,31], hepatic impairment [32], 
and cardiovascular disease models [33,34]. Using a well-
known animal model, we recently demonstrated that 
the DPP4 inhibitor MK0626 protects against tacrolim-
us-induced pancreatic islet and renal injury via antia-
poptotic and antioxidative actions [35,36]. In this review, 
we searched the literature for the pleiotropic roles of 
DPP4 in the prevention and management of NODAT 
and its comorbidities.

MOLECULAR BIOLOGY OF DPP4

DPP4 was first discovered by Hopsu-Havu and Glenner 
[37] in 1966. This protein is also called CD26 and is a 
ubiquitously expressed 110-kDa glycoprotein that be-
longs to the type 2 transmembrane protein family [38]. As 
a member of the serine peptidase/prolyl oligopeptidase 
family, DPP4 is often subclassified based on its structure 
and function as follows: membrane-bound peptidase 
(fibroblast activation protein (FAP)/seprase), resident cy-
toplasmic enzyme (DPP8 and DPP9), and nonenzymatic 
member (DPP6 and DPP10). These proteins share a typ-
ical α/β-hydrolase fold. DPP4 comprises four domains: 
a short cytoplasmic domain, a transmembrane domain, 
a flexible stalk segment, and the extracellular domain, 
which is further separated by a glycosylated region, the 
cysteine-rich region, and the catalytic region [38,39]. 
DPP4 can cleave dozens of peptides, including chemo-
kines, neuropeptides, and regulatory peptides, con-
taining a proline or alanine residue at position 2 of the 
amino-terminal region [40]. Despite the preference for 
proline at position 2, alternate residues at the penulti-
mate position are also cleaved by DPP4, indicating a re-
quired stereochemistry for cleavage. This DPP4 cleavage 
at post-proline peptide bonds inactivates peptides and/
or generates new bioactive peptides, thereby regulating 
diverse biological processes.

Most of the in vivo and in vitro experimental approach-
es used in this context have been employed to identify 
and characterize DPP4 substrates by incubation with 
plasma containing DPP4, transfected DPP4, or purified 
soluble DPP4. The results of these studies have shown 

www.kjim.org


761

Lim SW, et al. Role of DPP4 inhibitors in NODAT

www.kjim.orghttp://dx.doi.org/10.3904/kjim.2015.30.6.759

that DPP4 substrates can be broadly classified into phys-
iological and pharmacological substrates, the former of 
which include GIP and GLP-1 and the latter of which 
consist of a superfamily member, such as brain natri-
uretic peptide, erythropoietin, endomorphin-1, or glu-
cagon [38-40]. Because of its diverse substrates, DPP4 ex-
erts pleiotropic actions via protease activity, associations 
with adenosine deaminases, interactions with the ex-
tracellular matrix, cell surface co-receptor activity, and 
regulation of intracellular signal transduction coupled 
to the control of cell migration and proliferation. Thus, 
DPP4 triggers multiple biological activities in paracrine 
or endocrine manners.

PIVOTAL DPP4 SUBSTRATES 

Numerous peptides that contain a cleavable amino acid 
sequence at their penultimate position are potential 
DPP4 substrates. There seems to be a size limitation, 
at least for cytokines, because DPP4 is more prone to 
cleave substrates with approximately 24 amino acids 
[38,39]. The incretin hormones are secreted from the 
gut and account for approximately 50% of the insu-
lin secretion that occurs within minutes after a meal. 
These hormones stimulate insulin secretion and sup-
press glucagon release by binding to its distinct recep-
tors on pancreatic β-cells. GIP and GLP-1 are the most 
potent glucose-lowering hormones, and both proteins 
belong to the same glucagon peptide superfamily and 
share amino acid characteristics [40]. GIP is a 42-amino 
acid peptide derived from preproGIP via post-transla-
tional processing by prohormone convertase (PC) 1/3, 
which originates mainly from enteroendocrine K cells 
[41,42]. GLP-1 is secreted from L cells of the distal gut 
after post-translational cleavage of proglucagon by PC 
1/3 in the bloodstream; DPP4 can cleave GLP-1 [43]. In-
tact GLP-1 promotes glucose-stimulated insulin secre-
tion and suppresses glucagon secretion, appetite, and 
gastric emptying via the GLP-1 receptor (GLP-1R) [41]. 
DPP4 cleavage eliminates the classical glucoregulatory 
actions of GLP-1 and generates peptides with a 100-fold 
lower receptor affinity, illustrating that the N-terminal 
residues are required for engaging GLP-1R. GIP is also 
expressed in islet α-cells and stimulates insulin secre-
tion [44]. DPP4 cleaves GIP to release the dipeptide (Tyr-

Ala); however, GIP is unable to activate the GIP receptor 
and functions as an antagonist in vitro. Unlike GLP-1, 
GIP has no effect on glucagon secretion, but regulates 
fat metabolism in adipocytes.

DPP4 INHIBITORS

The majority of DPP4 substrates are so-called incretin 
hormones, which are key regulators of postprandial in-
sulin release. Inhibiting DPP4 may result in its greater 
bioavailability, thereby prolonging the half-life of insu-
lin action. Thus, DPP4 inhibitors have been approved 
for treating T2DM, either as a monotherapy, add-on, or 
combined therapy with other glucose-lowering agents. 
In addition to the lack of an effect on satiety and gas-
tric emptying, the benefits of DPP4 inhibitors are their 
indifference to body weight gain and the risk of hypo-
glycemia. Five gliptins have been approved for clinical 
use: sitagliptin, vildagliptin, saxagliptin, linagliptin, and 
alogliptin. In addition, teneligliptin, anagliptin, and 
trelagliptin have been approved in Japan and Korea. 
This article outlines the five gliptins that are commonly 
used in clinical practice.

Sitagliptin was the first DPP4 inhibitor approved in 
2006 for clinical use to treat T2DM and is currently 
available as a monotherapy or fixed-dose combination 
with other antidiabetic agents, such as metformin [45]. 
It is a competitive and fully reversible DPP4 inhibitor 
that has a half-maximal inhibitory concentration (IC50) 
of 18 nM and interacts with the S2 extensive subsite 
of the DPP4 active center [46]. Its high selectivity en-
sures targeted action on DPP4 and avoids unwanted 
secondary effects or potential toxicities resulting from 
cross-inhibition of other DPP peptides, such as DPP8 
or DPP9 [47]. Sitagliptin (50 mg once daily) may reduce 
DPP4 activity by 80% within 12 hours, and 100 mg of 
sitagliptin maintains similar effectiveness for 24 hours 
[45]. Moreover, sitagliptin has high bioavailability, and 
approximately 80% of the parent drug is excreted un-
changed in the urine. Therefore, no dose adjustment is 
needed in patients with mild renal insufficiency (creat-
inine clearance > 50 mL/min). However, a half dose (50 
mg) or a one-quarter dose (25 mg) is recommended for 
patients with moderate (creatinine clearance of 30 to 50 
mL/min) or severe (creatinine clearance of < 30 mL/min) 
renal insufficiency [48].
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In contrast to sitagliptin, vildagliptin only binds to 
the S1 and S2 subsites and forms a covalent bond with 
the nitrile group of their cyanopyrrolidine moiety and 
Ser630 of DPP4. Because it is a substrate-enzyme block-
er, vildagliptin has lower DPP4 selectivity (IC50 = 100 
nM) than does sitagliptin and cross-inhibits DPP8 [49]. 
Orally administered vildagliptin is well tolerated, rapid-
ly absorbed (within 3 hours), and mainly metabolized by 
the liver and partially by the kidney (27%) [50]. Although 
the major route for vildagliptin excretion is the liver, 
no difference in excretion is observed in patients with 
mild, moderate, or severe hepatic impairment, suggest-
ing that no dose adjustment is necessary for hepatically 
impaired patients [50]. In contrast, the recommended 
dose vildagliptin is the half dose (50 mg daily) for pa-
tients with moderate or severe renal insufficiency or 
end-stage renal disease but not in patients with mild 
renal impairment.

Similar to vildagliptin, saxagliptin is a selective and 
reversible DPP4 inhibitor that binds to the S1 and S2 
subsites. However, it differs from other gliptins be-
cause it has an active metabolite (5-hydroxy-saxagliptin, 
BMS-510849) that is also a selective, reversible, and com-
petitive DPP4 inhibitor. Both the parent form (12% to 
29%) and the saxagliptin metabolite (21% to 52%) can be 
secreted by the kidneys [51]. As a result, the saxagliptin 
dose should be reduced by 50% (2.5 mg daily) in patients 
with moderate or severe renal impairment.

Linagliptin was approved in 2011 by the U.S. Food 
and Drug Administration (FDA) and the European 
Medicines Agency for treating T2DM. This drug inter-
acts with both the S1’ and S2’ subsites; thus, it has an 
8-fold higher activity than other gliptins. Linagliptin 

binds tightly to plasma proteins after oral administra-
tion, and its pharmacokinetics are influenced by storable 
high-affinity binding to DPP4 in the plasma and tissues, 
leading to a long terminal half-life [52,53]. Linagliptin ki-
netics may be unaffected by food intake, as it is mainly 
excreted unchanged in the feces (> 84%). Recent clini-
cal trials have shown that a multiple dose of linagliptin 
[54] or linagliptin combined with metformin [55] is safe 
and well tolerated compared with placebo, suggesting 
that linagliptin should be administered to patients with 
T2DM as either monotherapy or in combination with 
other antihyperglycemic agents without adjusting the 
dose.

Alogliptin was first approved by the Pharmaceuticals 
and Medical Devices Agency of Japan in 2010 and by the 
FDA in 2013 for treating T2DM. It is a potent and high-
ly selective inhibitor of DPP4 with a mean IC50 of 6.9 
nM and 1,000-fold increased selectivity for DPP4 com-
pared with that of the closely related serine proteases 
DPP2, DPP8, DPP9, FAP/seprase, prolyl endopeptidase, 
and tryptase [56]. Alogliptin exhibits favorable pharma-
cokinetic, pharmacodynamic, and pharmacologic safety 
profiles. Therefore, alogliptin as a monotherapy or add-
on to metformin, pioglitazone, glipizide, glibenclamide, 
voglibose, or insulin significantly improves glycemic 
control compared with placebo or active comparators in 
adult and elderly patients with inadequately controlled 
T2DM [57,58]. Because the kidney is the main excretion 
route for alogliptin, accounting for 60% to 71% [58] of 
excretion, the oral dose should be reduced or withdrawn 
in patients with renal impairment. The details of DPP4 
inhibitors are summarized in Table 1 [45,50,56,58-64].

Table 1. Outline of common dipeptidyl peptidase-4 inhibitors 

Drug Approval Compound Type of inhibition Excretion route
Recommended 
dose, mg q.d.

Source

Sitagliptin (Januvia) 2006 FDA MK-0431 Competitive 80% via urine 100 [45,59]

Vildagliptin (Galvus) 2007 EMA LAF-237 Substrate blocker 21% via urine 50 [50,60]

Saxagliptin (Onglyza) 2009 FDA BUS-477118 Substrate blocker 12%–29% via urine 5 [61,62]

Linagliptin (Trajenta) 2011 FDA BI-1356 Competitive 84% via feces 5 [63,64]

Alogliptin (Nesina) 2013 FDA SYP-322 Competitive 60%–71% via urine 25 [56,58]

Teneligliptin (Tenelia) 2012 Japan
2014 Korea

MP-513 J-shape and
 anchor-lock domain

45.4% via urine; 
46.5% via feces

20 [56,58]

FDA, Food and Drug Administration; EMA, European Medicines Agency; q.d., once a day.
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ANTIDIABETIC EFFECT OF DPP4 INHIBITORS 

Transplant-associated hyperglycemia comprises NO-
DAT, impaired fasting glucose, and impaired glucose 
tolerance, all of which are closely related to increased 
morbidity and mortality in KTRs. Although NODAT 
confers a high risk for premature allograft failure and 
increased cardiovascular events, therapeutic strategies 
for this condition remain underexplored. Metformin 
is the first-line agent of choice for treating T2DM in 
the general population. However, the use of metformin 
in KTRs is often limited because of concern about lac-
tic acidosis. DPP4 inhibitors are a class of oral antidi-
abetic drugs that stabilize GLP-1 and GIP, resulting 
in improved glycemic control, reduced postprandial 
hyperglycemia, and a lower risk of weight-neutral and 
-lowering hypoglycemia in patients with T2DM. Over-
whelming evidence shows that DPP4 inhibitors are ef-
fective for managing NODAT. Strom Halden et al. [65] 
reported that 50 to 100 mg/day of sitagliptin increased 
the median first- and second-phase insulin secretion 
rates by 56.3% and 39.3%, respectively, and significantly 
reduced fasting and 2HPG concentrations by 14.8 and 
47.5 mg/dL, respectively, compared with those in a sita-
gliptin-free group of stable renal recipients with NO-
DAT. Haidinger et al. [66] demonstrated that vildagliptin 
profoundly reduced the concentrations of HbA1c (6.1% 
vs. 6.5%) and 2HPG (182.7 mg/dL vs. 231.2 mg/dL) com-
pared with placebo, which was almost achieved at 
the primary endpoint. Treatment with sitagliptin or 
vildagliptin had good efficacy and safety in both study 
arms, and associated adverse events were mild and ap-
peared to be negligible. This concept is supported by 
studies [67-69] reporting similar efficacy and safety of 
DPP4 inhibitors for treating NODAT. DPP4 inhibitors 
are considered a novel treatment alternative for KTRs 
with overt NODAT.

ANTIHYPERTENSIVE EFFECT OF DPP4 INHIBI-
TORS

Hypertension is an important cause of chronic kidney 
disease and a common complication of KTRs, account-
ing for 50% to 90% of their incidence [25]. Ogawa et al. 
[70] reported that an alternate-day treatment with sita-

gliptin significantly lowered systolic blood pressure 
(from 130.0 to 119.7 mmHg) and HbA1c levels in Japa-
nese hypertensive patients with T2DM. However, their 
body mass index remained unchanged, and no associ-
ation was found between systolic blood pressure and 
HbA1c level. The hypotensive effect of sitagliptin has 
also been observed in nondiabetic patients with mild to 
moderate hypertension, in whom both systolic and di-
astolic blood pressures decreased markedly after 5 days 
of sitagliptin treatment [71]. These clinical observations 
were further confirmed by animal studies using Zucker 
Diabetic Fatty rats [72] and spontaneously hypertensive 
rats [73], in which the antihypertensive effect of the DPP4 
inhibitors in which urinary flow and sodium excretion 
increased due to decreased expression of the type 3 so-
dium-hydrogen transporter in the renal proximal tu-
bule. The molecular mechanism underlying the anti-
hypertensive effect of DPP4 inhibitors is multifactorial 
and may involve neuropeptide Y (NPY) and peptide YY 
(PYY). Because NPY and PYY are agonists of the endog-
enous Y (1) receptor, which mediates vasoconstriction, 
these peptides are cleaved by DPP4 to NPY (3–36) and 
PYY (3–36) [74,75]. This additional antihypertensive effect 
can extend the clinical use of DPP4 inhibitors to KTRs 
and patients with NODAT.

ANTI-INFLAMMATORY EFFECT OF DPP4 INHIB-
ITORS

DM is a low-grade systemic inflammatory disease. Sup-
pressing inflammation slows the progression of DM. In 
addition to preserving glucose homeostasis, DPP4 inhib-
itors exert pleiotropic actions, such as anti-inflammatory 
effects. Alogliptin inhibits Toll-like receptor-4-mediated 
extracellular matrix signal-regulated kinase (ERK) activa-
tion and ERK-dependent matrix metalloproteinase ex-
pression in U937 histiocytes [76]. Des-fluoro-sitagliptin 
(sitagliptin analog) markedly enhances GLP-1-induced 
cytosolic levels of cyclic adenosine monophosphate 
(cAMP) compared with GLP-1 alone in cultured human 
macrophages and endothelial cells, resulting in inhibi-
tion of nuclear factor-κB p65 nuclear translocation via 
the cAMP/protein kinase A pathway; it also suppresses 
production of the proinflammatory cytokines inter-
leukin-1β (IL-1β), IL-6, tumor necrosis factor-α, and 
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monocyte chemoattractant protein-1 in response to li-
popolysaccharide (LPS) [77]. DPP4 inhibitors reduce cy-
clooxygenase-2, IL-1β, macrophage inflammatory pro-
tein-2, and TLR-4-mediated IL-6 expression in Zucker 
Diabetic Fatty rat [78], diabetic apolipoprotein E-de-
ficient mice [34], and C57BL/6J-obese/obese mice [79], 
which parallels recovery from disease. Matsubara et al. 
[80] reported that sitagliptin significantly decreases high 
sensitivity C-reactive protein levels and improves endo-

thelial function in human patients with uncontrolled 
DM. It is speculated that the anti-inflammatory prop-
erties of DPP4 inhibitors may be largely beneficial for 
KTRs with DM.

ANTIAPOPTOTIC EFFECT OF DPP4 INHIBITORS

Apoptosis is an active cell clearance mechanism that 

Figure 1. Effect of MK-0626 on apoptosis and islet viability in tacrolimus-induced pancreatic and renal injured experimental 
rats. (Aa, Ba, Ca) In situ TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay in pancreatic islets. (Ab, Bb, Cb) Acridine 
orange/propidium iodide staining of isolated islets. (Ac, Bc, Cc) TUNEL assay in renal tissues. The tacrolimus group (B) com-
bined with the MK-0626 group (C) reduced apoptosis. (A) is the vehicle group (×400). Adapted from Lim et al. [36], with permis-
sion from Nature Publishing Group and Jin et al. [35].
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plays an important role in regulating cell numbers 
during homeostasis, development, and under disease 
conditions [81]. Although apoptosis is beneficial, it 
can also be deleterious if a critical number of resident 
cells are lost. In fact, the pathogenic role of apoptosis 
has been well described for a wide range of diseases, 
including DM and DM-associated micro- and macro-
vascular complications [82-84]. DM induces pancreatic 
β-cell apoptosis in vivo [85] and in vitro [86], and these 
cells are regulated by oxidative stress toward apoptotic 
cell death. Shimizu et al. [87] showed that vildagliptin 
increases pancreatic β-cell mass, improves aggravated 
endoplasmic reticulum stress, and restores pancreatic 
and duodenal homeobox 1 expression in diabetic pan-
creatic β-cell specific C/EBPB transgenic mice. The anti-
apoptotic effect of DPP4 inhibitors was also observed in 
studies of cardioprotection [88] and renoprotection [27] 
via modulation of the Bax to Bcl-2 ratio and caspase-3 
activity. We recently reported that the DPP4 inhibi-
tor MK-0626 attenuates both pancreatic and renal cell 
apoptosis in tacrolimus-induced diabetic rats and that 
this is associated with the regulation of 8-hydroxy-2’-de-
oxyguanosine, heme oxygenase-1, and manganese su-
peroxide dismutase by preserving GLP-1 (Figs. 1 and 2) 
[35,36]. Our findings are consistent with those of a study 
performed by Chang et al. [89], which showed a role for 
sitagliptin in apoptosis and oxidative stress (glutathione 
peroxidase and malondialdehyde), favoring cell survival 
in a rat model of cardiac ischemia-reperfusion. Based 
on our findings and those of others, we speculate that 
DPP4 inhibitors trigger an antiapoptotic effect, partially 

by inhibiting oxidative stress injury.

IMMUNOMODULATORY EFFECT OF DPP4 		
INHIBITORS

Regardless of the above-mentioned effects, DM (partic-
ularly type 1 DM, autoimmune disease) is closely asso-
ciated with immunological injury in which pancreatic 
β-cells are selectively destroyed by the immune system. 
Therefore, the inhibition provided by DPP4 may exert 
an immunomodulatory effect against DM because DPP4 
is ubiquitously expressed in numerous cell types. In this 
context, whether DPP4 inhibitors possess immunomod-
ulatory properties remains controversial. Sitagliptin 
(100 mg/day) administered to healthy volunteers [90] 
and patients with T2DM [91] for 28 days and 6 months 
showed that neither the systemic immune function 
(chemokine/cytokine release by stimulation with either 
LPS or anti-CD3) nor CD4+ T-cell activation are affect-
ed. Anz et al. [92] reported that sitagliptin, vildagliptin, 
and saxagliptin have no effect on the innate immune 
response in terms of cytokine secretion, immune cell 
activation, or lymphocyte trafficking after toll-like re-
ceptor ligand stimulation. In contrast, treatment of 
nonobese diabetic mice with MK0431 before and after 
islet transplantation reduces the effect of autoimmunity 
on graft survival by decreasing homing of CD4+ T-cells 
via cAMP/PKA/Rac1 activation [93]. Furthermore, lina-
gliptin and DA-1229 reduce the onset of DM and the 
total mass of lymphocyte insulitis and protect the β-cell 

Figure 2. Effect of MK-0626 on oxidative stress and apoptotic gene expression in tacrolimus (TAC)-induced pancreatic and re-
nal injured experimental rats. (A) Immunoblot analysis of manganese superoxide dismutase (MnSOD), heme oxygenase-1 (HO-1), 
Bcl-2, active caspase-3, and β-actin. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) levels in serum (B) and 24-hour urine (C). Adapted 
from Lim et al. [36], with permission from Nature Publishing Group and Jin et al. [35]. ap < 0.05 vs. vehicle (VH) group or VH + 
M groups; bp < 0.05 vs. TAC group. 
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mass and neogenesis in nonobese diabetic and strepto-
zotocin-induced mice [94,95]. The reasons for this dis-
crepancy are unknown but may be related to the study 
setting and type of DM. Further studies are needed to 
resolve this issue.

CONCLUSIONS

DPP4 inhibitors were developed initially and approved 
for treating T2DM, based on inhibiting degradation 
of GLP-1 and GIP. Increasing evidence demonstrates 
that DPP4 inhibitors exert potential pleiotropic effects 
including anti-inflammation, antihypertension, antia-
poptosis, and immunomodulation on the heart, vessels, 
and kidney, independent of their hypoglycemic effect 
(Fig. 3). Preclinical and clinical studies have shown that 
DPP4 inhibitors are well tolerated, safe, and efficacious 
and lower the risk of hypoglycemia in stable KTRs with 
NODAT. This is of great clinical relevance because of 
the huge proportion of transplant recipients with DM. 
The cardioprotective and renoprotective effects of DPP4 
inhibitors offer an additional therapeutic avenue for 
this new drug class.
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