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Aging is associated with progressive functional deterioration and structural 
changes in the kidney. Changes in the activity or responsiveness of the renin-an-
giotensin system (RAS) occur with aging. RAS changes predispose the elderly to 
various fluid and electrolyte imbalances as well as acute kidney injury and chron-
ic kidney disease. Among the multiple pathways involved in renal aging, the RAS 
plays a central role. This review summarizes the association of the RAS with 
structural and functional changes in the aging kidney and age-related renal inju-
ry, and describes the underlying mechanisms of RAS-related renal aging. An im-
proved understanding of the renal aging process may lead to better individual-
ized care of the elderly and improved renal survival in age-related diseases. 
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INTRODUCTION

Aging is associated with progressive functional deteri-
oration and structural changes in the kidney. The glo-
merular filtration rate (GFR) declines by ~0.40 to 1.02 
mL/min per year [1], which is attributed to a reduction 
in the number of functioning glomeruli and an in-
crease in the number of sclerotic glomeruli [2]. The re-
nal plasma flow is maintained at ~600 mL/min until 
the fourth decade of life and then declines by ~10% per 
decade [3]. Age-related glomerular hemodynamic 
changes occur including reductions in the glomerular 
capillary plasma flow rate, glomerular capillary ultra-
filtration coefficient and afferent arteriolar resistance 
[4]. Structural changes occur along with functional 
changes: the renal mass regresses progressively with 
aging [5], the percentage of glomerulosclerosis and tub-
ulointerstitial fibrosis increases [6] and hyalinization of 
afferent arterioles may develop [7]. In addition, changes 
in the activity or responsiveness of hormonal systems 

occur with aging, altering homeostatic mechanisms in 
the elderly [8]. The renin-angiotensin system (RAS) is 
particularly important, as changes in the RAS predis-
pose the elderly to acute kidney injury and chronic kid-
ney disease (CKD). This review focuses on RAS changes 
in normal aging and aging-related kidney disease, as 
well as the molecular mechanisms underlying the 
RAS-associated renal aging process. 

INVOLVEMENT OF THE SYSTEMIC RAS IN   
AGING  

Previous reports have shown that the systemic RAS is 
suppressed with age. Compared to younger groups, 
older populations have lower levels of plasma renin and 
aldosterone at baseline [9] and show an impaired ability 
to trigger appropriate responses to RAS stimuli such as 
upright posture, sodium depletion or potassium infu-
sion [10,11]. Studies in aging animals showed that both 
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renal renin formation and release are reduced, which 
results in a decrease in plasma renin concentration [12]. 
In addition, the change in RAS activity leads to an al-
tered response to RAS blockade. The effects of angio-
tensin-converting enzyme (ACE) inhibitors on blood 
pressure, renal function and proteinuria are blunted in 
aging animals [13,14]. In addition, elderly populations 
exhibit a decreased antihypertensive response to ACE 
inhibitors than younger groups [15].

These age-related decreases in plasma renin and al-
dosterone may lead to various fluid and electrolyte ab-
normalities. Elderly populations on a salt-restricted 
diet have a decreased ability to conserve sodium and are 
likely to develop hyponatremia [16]. Decreased angio-
tensin II (Ang II) secretion impairs the tubular concen-
trating ability and predisposes the elderly to develop 
volume depletion and hyponatremia [17]. The risk of 
hyperkalemia increases as the transtubular potassium 
gradient is reduced in the elderly [18]. In addition, po-
tassium levels can be critically elevated after potassi-
um-loading conditions such as gastrointestinal bleed-
ing, blood transfusion or administration of potassium.   
The tendency towards hyperkalemia can be enhanced 
by the reduction in GFR, metabolic acidosis or medica-
tions that inhibit renal tubular potassium excretion, 
such as ACE inhibitors, Ang II type 1 (AT1) receptor an-
tagonists (AT1RA), nonsteroidal anti-inf lammatory 
drugs and potassium-sparing diuretics [12,17].

INVOLVEMENT OF THE INTRARENAL RAS IN 
AGING

The age-related changes in the RAS are also observed in 
the kidney. In aging rats, renal mRNA expression was 
reduced prior to a decline in plasma renin, and renal 
ACE levels were reduced before the decline in plasma 
ACE levels [12]. Aging animals show an altered renal re-
sponse to systemic RAS activation, such as exogenous 
Ang II. Reductions in GFR and renal plasma flow were 
exaggerated in older rats with the administration of 
Ang II, whereas responsiveness to Ang II blockade was 
preserved but not enhanced [19]. Therefore, the en-
hanced renal hypersensitivity to Ang II may lead to fur-
ther reductions in GFR when the elderly kidney is ex-
posed to RAS stimuli such as hypovolemia, hypotension 

or sodium restriction. 

THE RAS AND AGE-RELATED RENAL INJURY 

Animal studies have shown increased glomerular cap-
illary pressure due to a reduction in afferent arteriolar 
resistance, urinary protein excretion, and focal and 
segmental glomerular sclerosis in the aging kidney. In 
addition, ACE inhibitors lowered the glomerular capil-
lary pressure and proteinuria, and reduced focal and 
segmental glomerular sclerosis [13,14] and interstitial 
sclerosis, whereas calcium-channel blockers did not 
[20]. These results suggest that the RAS is involved in 
glomerular and tubular damage during the aging pro-
cess [21].

Previous studies emphasized the role of renal sirtu-
ins in protecting the kidney against aging. Sertuins are 
a family of  NAD+-dependent histone deacetylases that 
act on forkhead homeobox type O (FoxO) transcription 
factors, peroxisome proliferator-activated receptor γ 

and nuclear factor-κB [22,23]. Among seven mammali-
an sirtuins, sirtuin 1 (Sirt1), and sirtuin 3 (Sirt3) are con-
sidered antiaging molecules in the kidney [24]. Sirt1 ac-
tivation protected the mouse renal medulla from 
oxidative injury and provided antiapoptotic and antifi-
brotic effects in the obstructed mouse kidney [25]. Re-
cently, we demonstrated decreased renal Sirt1 expres-
sion and increased oxidative stress in the kidneys of 
aging mice [26]. These findings suggest a role for Sirt1 
in regulation of oxidative stress in the aging kidney. 
Several reports have suggested the role of Sirt1 as a neg-
ative regulator of AT1 receptor expression. Overexpres-
sion of Sirt1 or treatment with resveratrol, an activator 
of Sirt1, suppressed AT1 receptor expression in cultured 
smooth muscle cells, and resveratrol improved Ang 
II-induced hypertension in mice [27]. Sirt1 overexpres-
sion decreased Ang II-increased binding of nuclear fac-
tor-κB to its specific binding sites and inhibited Ang 
II-induced vascular remodeling in mice [28]. Ang 1–7, a 
derivative from the cleavage of Ang II by ACE, has coun-
teractive effects of Ang II [29,30]. Ang 1–7 reduced renal 
lipotoxicity through the regulation of the Sirt1-FoxO1 
pathway in diabetic nephropathy [31]. Sirt3 may also be 
involved in renal aging in association with the RAS. 
Mice with disrupted AT1A receptor genes live longer 
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and have lower levels of oxidative stress and increased 
expression of Sirt3 compared with aged wild-type mice 
[32]. In addition, Sirt3 mRNA expression was downreg-
ulated by Ang II, which was inhibited by AT1RA in tubu-
lar epithelial cells [32]. These prosurvival effects of RAS 
blockade are related to the preservation of renal mito-
chondria. AT1A receptor-deficient mice showed an in-
creased number of mitochondria in the proximal renal 
tubular cells [32]. Moreover, the treatment with ACE in-
hibitor or AT1RA attenuated the age-associated mito-
chondrial dysfunction [33]. These findings suggest the 
association of the RAS with oxidative stress in the aging 
process in the kidney. 

KLOTHO AND RAS IN THE KIDNEY 

Genetics play an important role in aging-associated re-
nal impairment [34]. In 1997, the klotho gene was found 
to be involved in the suppression of aging phenotypes 
[35]. The discovery of klotho led to further insight into 
the role of genetics in aging-related renal changes. The 
klotho gene is expressed predominantly in the kidney in 
a transmembrane form [36], and the expression of klotho 
was reduced markedly in the kidney of patients with 
CKD [37]. Previously, we demonstrated increased renal 
fibrosis and oxidative stress with decreased renal ex-
pression of klotho in aging mice [26]. The secreted klotho 
functions as a regulator of multiple glycoproteins, in-
cluding insulin/insulin-like growth factor-1 receptors, 
and possess antiapoptotic and antioxidant effects [36,38]. 
Increasing evidence has shown the association between 
klotho and the RAS. Long-term infusion of Ang II 
downregulated renal klotho gene expression, and in vivo 
klotho gene transfer ameliorated Ang II-induced renal 
damage [39]. Another study showed that the Ang II-in-
duced reduction in renal klotho expression was mediat-
ed by promoting intrarenal iron deposition and induc-
tion of oxidative stress [40]. Moreover, diabetic patients 
with CKD treated with AT1RA showed elevated plasma 
soluble Klotho levels compared to those who were not 
treated with AT1RA [41]. We reported previously that the 
intrarenal RAS is upregulated and renal expression of 
klotho is downregulated in chronic cyclosporine-in-
duced nephropathy, and that AT1RA upregulated the ex-
pression of renal klotho and attenuated renal fibrosis 

and oxidative stress [42]. Characteristics of chronic cyc-
losporine-induced nephropathy include progressive 
renal failure with striped interstitial fibrosis, tubular 
atrophy, inflammatory cell infiltration and hyalinosis 
of the afferent arterioles [43], and are similar to the al-
terations in the aging kidney. These findings suggest 
that the RAS is involved in renal senescence at the ge-
netic level. 

CONCLUSIONS

Aging disrupts the activity and responsiveness of the 
RAS. The altered systemic and intrarenal RAS may pre-
dispose the elderly population to kidney damage or flu-
id and electrolyte imbalances. Therefore, understand-
ing the association between renal aging and the RAS is 
crucial for providing individualized care in the elderly. 
Moreover, the RAS is involved in the age-associated 
structural and functional renal impairment, and RAS 
inhibition has a protective role against renal aging. The 
underlying mechanisms of renal aging involve the reg-
ulation of renal sirtuins, oxidative stress and mito-
chondrial dysfunction, and the antiaging gene klotho. 
As changes in renal aging overlap with the structural 
and functional manifestation of CKD, understanding 
the role of the RAS in age-related changes in the kidney 
may help to elucidate the pathogenesis of CKD. 
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