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INTRODUCTION

Peroxisome proliferator-activated receptor (PPAR)γ is a

nuclear hormone receptor that, with the retinoid X recep-

tor (RXR), binds as a heterodimer to the PPAR response

element (PPRE), a direct repeat of ‘AGGTCA’ gapped by a

nucleotide. PPAR is trans-activated by several agonists,

including 15-deoxy-∆12,14-prostaglandin J2 (15dPGJ2) and

thiazolidinediones (TZDs); the latter are widely used as

insulin-sensitizers in the treatment of diabetes [1] (Fig. 1).

Recently, pleiotropic effects of PPARγ agonists in the vas-

culature have been demonstrated. These effects are inde-

pendent of blood glucose-lowering activity and include

protection against the progression of hypertension, ather-

osclerosis, and renal dysfunction [2]. In this review, we
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Figure 1. Schematic representation of PPARγ/RXR het-
erodimer binding to the PPRE on DNA. PPAR, peroxisome pro-
liferator-activated receptor; RXR, retinoid X receptor; PPRE,
PPAR response element. Modified figure from Sugawara et al.
Endocr J 2010;57:847-852 with permission from The Japan
Endocrine Society [3]. 
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discuss recent findings regarding the additional beneficial

aspects of PPARγ agonists in the vasculature, including

conclusions based on our own data.

Effects of PPARg agonists in hypertension

The blood-pressure-lowering effect of TZDs was recent-

ly demonstrated in a clinical study [4] and in the PROactive

(PROspective pioglitAzone Clinical Trial In macroVascular

Events) study, in which 5,238 type 2 diabetic patients

were enrolled. Among the results of that trial, treatment

with the TZD pioglitazone was shown to significantly

decrease (3 mmHg) systolic blood pressure [5]. Because

the renin-angiotensin (Ang)-aldosterone system (RAAS)

plays the most important role in the progression of hyper-

tension, we examined the effects of several PPARγ ago-

nists on Ang II type 1 receptor (AT1R) expression in vascu-

lar smooth muscle cells (VSMCs). Interestingly, 15dPGJ2,

as well as TZDs (pioglitazone,  troglitazone, rosiglitazone),

dose-dependently decreased the expression of AT1R

mRNA [6,7].

Transcriptional analysis using the rat AT1R gene pro-

moter (-1969/+104) and AT1R mRNA stability analysis

using actinomycin D together revealed that PPARγ ago-

nists decrease AT1R expression at the transcriptional

level. Mutation analysis of the promoter demonstrated

that transcriptional suppression was mediated within the -

58/-34 region (TGC AGA GCA GCG ACG CCC CCT AGG

C) of the AT1R gene promoter, which contains a GC-box-

related sequence (underlined), but lacks a PPRE [6] (Fig.

2). Instead, the transcription factor Sp1 was shown to bind

to and trans-activate the promoter region [6]. Over-

expression of PPARγ and Sp1, followed by transcriptional

analysis, electrophoretic mobility shift assay, and glu-

tathione S-transferase pull-down assay, revealed that ago-

nist-activated PPARγ does not bind to the -58/-34 region,

but rather to Sp1 via a protein-protein interaction [6].

Moreover, Sp1 binding to the region was inhibited by co-

incubation with PPARγ [6]. These results suggested that

PPARγ-agonist-induced transcriptional suppression of the

AT1R gene is mediated by the inhibition of Sp1 binding to

the -58/-34 region through a protein-protein interaction

between agonist-activated PPARγ and Sp1 (Fig. 2).

Furthermore, transcriptional suppression was abrogated

by the over-expression of co-activator CERB-binding pro-

tein (CBP) and PPARγ phosphorylation by mitogen-acti-

vated protein (MAP) kinase [8], most likely due to the

functional modification of PPARγ (Fig. 2). PPARγ-agonist-

mediated suppression of AT1R expression was also

demonstrated in Ang-II-infused rats [9,10]. Moreover,

PPARγ agonists have been shown to suppress Ang-II-

induced phosphatidylinositol 3-kinase and MAP kinase

Figure 2. Possible mechanism of PPARγ-agonist-mediated
transcriptional suppression of the AT1R gene promoter.
Agonist-activated PPARγ may inhibit Sp1 binding to the GC-
box-related sequence through a protein-protein interaction,
which, in turn, would result in transcriptional suppression. The
co-activator CBP and the phosphorylation of PPARγ by MAP
kinase may together modulate PPARγ function. PPAR, peroxi-
some proliferator-activated receptor; AT1R, Ang II type 1 recep-
tor; CBP, CERB-binding protein. Modified figure from
Sugawara et al. Endocr J 2010;57:847-852 with permission
from The Japan Endocrine Society [3].

a

Figure 3. Possible effects of PPARγ agonists against atheroscle-
rosis and hypertension through suppression of RAAS and the
thromboxane system. PPAR, peroxisome proliferator-activated
receptor; RAAS, renin-angiotensin (Ang)-aldosterone system;
TX, thromboxane; TXS, TX synthase; TXR, TX receptor, VSMC:
vascular smooth muscle cells. Modified figure from Sugawara et
al. Endocr J 2010;57:847-852 with permission from The Japan
Endocrine Society [3]. 
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[10] and to ameliorate Ang-II-mediated inflammatory

responses by interfering with the Toll-like-receptor-4-

dependent signaling pathway [11]. Additionally, using

human adrenal H295R cells, we recently found an

inhibitory effect of PPARγ agonists on Ang-II-induced

aldosterone synthase expression and aldosterone secre-

tion [12]. Thus, PPARγ agonists not only down-regulate

AT1R expression but also inhibit Ang-II-mediated signal-

ing pathways and adrenal aldosterone synthesis/secre-

tion, which, together, may result in RAAS suppression

(Fig. 3). The ability of PPARγ agonists to lower blood pres-

sure has been reported in Ang-II-infused Sprague-Dawley

rats [9,10], spontaneously hypertensive rats [13], deoxy-

corticosterone acetate-salt rats [14], and hypertensive

double-transgenic mice expressing human renin and

human angiotensinogen transgenes [15]. Conversely,

transgenic mice expressing a dominant-negative PPARγ
P465L mutation exhibited hypertension [16], consistent

with the phenotype of patients with an equivalent PPARγ
P467L mutation [17], without affecting RAAS compo-

nents. Moreover, genetic manipulation of mice with vary-

ing PPARγ expression demonstrated that blood pressure

was lowered by an increase in receptor expression and

increased when levels of the receptor were reduced [18].

Taken together, these results suggest that the decrease in

blood pressure mediated by PPARγ agonists occurs

through several different mechanisms in addition to

RAAS inhibition.

Effects of PPARγ agonists in protection against
atherosclerosis

Thromboxane (TX) A2, which is generated from

prostaglandin H2, stimulates the contraction and prolifer-

ation of VSMCs and may be involved in the progression of

atherosclerosis. We thus examined the effect of PPARγ
agonists on the expression of TX synthase (TXS) in

macrophages [19] and the TX receptor (TXR) in VSMCs

[7,20]. PPARγ agonist suppressed both TXS and TXR

expression at the transcriptional level [7,19,20]. Detailed

analysis revealed that agonist-activated PPARγ inhibited

nuclear factor E2-related factor 2 (NRF2) binding to DNA

of the TXS gene [19], and Sp1 binding to DNA of the TXR

gene [20], in both cases via protein-protein interactions.

Accordingly, PPARγ agonists may suppress the progres-

sion of atherosclerosis through inhibition of both the TX

system, including the synthesis and action/signal-trans-

duction function of TXA2 (Fig. 3), and RAAS.

Atherosclerosis is usually preceded by endothelial dys-

function, whereas PPARγ agonists have been reported to

improve the function of these cells not only in streptozo-

tocin-induced diabetic rats [21] and diabetic db/db mice

[22], but also in type 2 diabetic patients [23] and non-dia-

betic patients with coronary artery disease [24]. Additionally,

transgenic mice specifically expressing dominant-negative

PPARγ in endothelium developed endothelial dysfunction

in response to a high-fat diet [25]. PPARγ agonists have

also been reported to reduce carotid intimal-medial thick-

ness (CIMT) and in-stent restenosis after coronary inter-

vention in diabetic and non-diabetic patients [26], neoin-

tima formation after balloon injury in rats [27], and in-

stent restenosis in atherosclerotic rabbits [28]. Meta-

analysis of controlled trials involving type 2 diabetic

patients found a significant reduction in CIMT and pulse

wave velocity by PPARγ agonists of the TZD group [29].

We examined the direct effect of PPARγ agonists on

endothelial gene expression by performing DNA microar-

ray analyses. In those experiments, confluent human

umbilical vein endothelial cells (HUVEC) were treated for

24 hours with the TZD pioglitazone, at a concentration

(100 nM) mimicking the serum concentration in patients

after a single oral administration. RNA extracted from the

cells was processed for DNA microarray analyses using

Human Genome Oligo Set (Operon Biotechnologies Inc.,

Huntsville, AL, USA), allowing the analysis of approxi-

mately 35,000 genes. Representative regulated genes are

shown in Table 1. Among the genes induced by pioglita-

zone were tissue inhibitor of metalloproteinases-3, prosta-

cyclin receptor, kallikrein 6 and 11, prostaglandin E2

Table 1. Effects of PPARγ agonist pioglitazone on endothe-
lial gene expression

Genes up-regulated by pioglitazone treatment

Tissue inhibitor of metalloproteinases-3 3.0-fold 

Prostacyclin receptor 5.8-fold

Kallikrein 6 2.6-fold

Kallikrein 11 5.6-fold

Prostaglandin E2 receptor, EP1 subtype 3.7-fold

Microsomal glutathione S-transferase 3 2.1-fold

Genes down-regulated by pioglitazone treatment 

Matrix metalloproteinase-10 0.45-fold 

Plasminogen activator inhibitor-2 0.49-fold

PPAR, peroxisome proliferator-activated receptor. Modified fig-

ure from Sugawara et al. Endocr J 2010;57:847-852 with per-

mission from The Japan Endocrine Society [3]. 



receptor (EP1 subtype), and microsomal glutathione S-

transferase 3. Suppressed genes included matrix metallo-

proteinase-10 and plasminogen activator inhibitor-2 [30].

The protection of endothelial function by PPARγ agonists

may thus proceed through the regulation of gene expres-

sion. Recently, PPARγ agonists were reported to stimulate

endothelial nitric oxide (NO) production in HUVECs [31]

and to increase the number and function of endothelial

progenitor cells in patients with coronary artery disease

[32]. Additionally, disruption of the endothelium-specific

PPARγ in mice resulted in the reduction of vascular NO

production without affecting endothelial NO synthase

expression [33]. These observations, in addition to our

DNA microarray findings, may also explain the anti-

atherogenic effects of PPARγ agonists.

Effects of PPARβ agonists in renal dysfunction

To examine the intra-renal localization of PPARγ pro-

tein, we generated an isoform-specific anti-PPARγ anti-

body, which was then used in the immunohistochemical

analysis of Sprague-Dawley rat kidneys [34,35]. PPARγ
protein was observed to be widely expressed in the nuclei

of mesangial and epithelial cells in the glomeruli, proximal

and distal tubules, loop of Henle, and medullary collecting

ducts [34]. Additionally, the protein was detected in the

intima/media of the renal vasculature [34]. We previously

reported the vasodilating effects of the TZD troglitazone

on the glomerular efferent arterioles of microdissected

rabbit kidneys [36]. As suggested by the immunohisto-

chemical data, these vasodilating effects may be mediated

by PPARγ expressed in the intra-renal arterioles. The

expression of PPARγ protein was also induced in distal

tubules and cortical collecting ducts following administra-

tion of the TZD rosiglitazone to Sprague-Dawley rats [35].

These findings are potentially relevant in terms of patho-

physiology, because TZDs have been reported to expand

body fluid volume by the PPARγ-mediated stimulation of

renal salt absorption through epithelial Na+ channels [37].

Renal protective effects of PPARγ ligands on type 2 dia-

betic patients with nephropathy, especially with respect to

a reduction in urinary albumin, have recently been report-

ed [38]. A meta-analysis of 15 studies involving 2,860 dia-

betic patients demonstrated a significant decrease in uri-

nary albumin excretion in response to TZD-type PPARγ
agonists [39]. Additionally, similar effects were observed

in animal experiments using various rodent models of

type 2 diabetes [38]. The mechanisms by which PPARγ
agonists reduce urinary albumin remain unclear. However,

together with their vasodilating effect on glomerular effer-

ent arterioles [36], a lowering of blood pressure and an

improvement of endothelial dysfunction may be cumula-

tively involved. Additionally, a recent study described the

renal protective effect of PPARγ agonists against non-dia-

betic renal disease [40], indicating their general useful-

ness in the treatment of chronic kidney disease. We have

also demonstrated a renal protective effect of the TZD

rosiglitazone against cyclosporine-induced renal injury in

Sprague-Dawley rats [41]. Moreover, the renal protective

effect of the TZD pioglitazone against aging-related renal

injury has been reported [42].

CONCLUSION

More than a decade has passed since the pleiotropic

effects of PPARγ agonists were first reported. However,

novel effects of PPARγ agonists are still being described on

almost a monthly basis. In addition to the effects of these

agents discussed in this review, anti-cancer activities of

PPARγ agonist were recently reported [43]. We have also

reported inhibitory effects of TZD-type PPARγ agonists on

cell growth and REG (regenerating gene) Iα expression in

gastrointestinal cancer cell lines [44]. It thus seems likely

that the usefulness and effectiveness of PPARγ agonists

against lifestyle-related diseases will be increasingly

appreciated. This, in turn, may lead to further approved

clinical applications of PPARγ agonists in the treatment of

hypertension, atherosclerosis, and renal dysfunction, in

addition to diabetes.
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