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Medium cut-off (MCO) membranes have emerged as a promising innovation in hemodialysis (HD), offering enhanced clear-
ance of large middle-molecules of uremic toxins compared to traditional HD membranes, while maintaining minimal loss 
of albumin. The introduction of MCO membranes represents a significant advancement in dialysis technology, potentially 
reducing the risk of complications associated with inadequate removal of toxins. Compared to high-flux membranes, MCO 
membranes demonstrate superior efficacy in eliminating large middle-molecules without excessive loss of beneficial proteins, 
such as albumin. The clinical benefits of MCO membranes extend beyond toxin clearance. They improve quality of life, re-
duce erythropoiesis-stimulating agent doses and resistance, lower hospitalization rates, and decrease overall healthcare costs. 
Currently, there is insufficient evidence regarding the effects of MCO membranes on cardiovascular diseases and mortality. 
Further studies are required to assess their effects on patient outcomes and long-term survival. Future innovations in mem-
brane technology, coupled with ongoing research and development, have the potential to enhance dialysis efficacy further, 
reduce complications, and facilitate the development of eco-friendly solutions. Additional studies are required to fully explore 
the potential of MCO membranes and refine their clinical application.
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INTRODUCTION

As kidney function declines and progresses to end-stage 
kidney disease (ESKD), kidneys lose their ability to remove 
waste products effectively. Consequently, patients with 
ESKD require kidney replacement therapy such as dialysis 
or kidney transplantation. Hemodialysis (HD) involves the 
movement of blood and dialysates across the HD membrane 
to ensure efficient dialysis. Water and solutes pass through 
semipermeable membranes via distinct separation mech-
anisms such as diffusion and ultrafiltration. These mecha-
nisms rely on the pressure gradient created by the patient’s 

blood to allow water and solutes to move toward the dial-
ysate side. HD is critical for removing waste products and 
regulating the fluid balance, particularly for clearing uremic 
toxins. For decades, continuous efforts have been made to 
optimize uremic toxin removal using HD membranes. Stan-
dard high-flux dialysis membranes are not highly effective 
at removing middle-molecular-weight uremic toxins, par-
ticularly those larger than 15 kDa. Although online hemo-
diafiltration (HDF) utilizing high-flux membranes combines 
convection and diffusion to broaden the range of uremic 
toxins, it also presents challenges, such as the need for high 
vascular access flow, ultrapure water, and large convective 
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volumes. Recent advancements in dialysis membranes aim 
to enhance convective clearance while limiting albumin 
loss to improve the elimination of middle-molecular-weight 
toxins [1]. Consistent with these advancements, a medium 
cut-off (MCO) membrane, a next-generation dialysis mem-
brane, was developed to enable expanded HD by effectively 
removing the middle molecules. This review aims to provide 
a comprehensive overview of MCO membranes and their 
clinical implications, discussing their advantages over tra-
ditional dialysis membranes and their potential to improve 
patient outcomes in ESKD.

EVOLUTION OF HD MEMBRANES AND 
UREMIC TOXIN CLASSIFICATION

HD membrane development is a continuous process. HD 
membranes are classified into cellulosic and synthetic types, 
based on their composition [2]. Recently, synthetic mem-
branes have become predominant, and a classification 
method based on the ultrafiltration coefficient has been 
proposed. HD membranes were initially classified as hav-
ing low or high permeability based on differences in water 
membrane permeability. Subsequent research further re-
fined this classification into low- and high-flux membranes, 
based on their ability to remove fluids and molecules [3]. 
Low- and high-flux membranes are categorized according 
to their ultrafiltration coefficients (Kuf), which represent 
the pore sizes of the membranes. High-flux dialyzers are 
defined as having a Kuf > 20 mL/h/mmHg, whereas low-
flux dialyzers are defined as having a Kuf < 10 mL/h/mmHg. 
Furthermore, acknowledging the critical role of albumin in 
human health, researchers have revised the classification to 
incorporate factors such as water permeability, beta-2 mi-
croglobulin clearance, and albumin-related parameters [4].

As kidney function declines, uremic toxins accumulate 
and are traditionally classified as small water-soluble mole-
cules, protein-bound solutes, or middle molecules [5]. When 
not used in HDF mode, high-flux dialysis membranes can 
remove uremic toxins with a molecular weight of approxi-
mately 15 kDa [6]. Accordingly, uremic toxins > 15 kDa are 
classified as large middle-molecules, with further subdivi-
sions based on the molecular weight and clearance capacity 
of the dialysis membranes. Recently, experts have suggested 
refining the classification of middle molecular uremic toxins, 
emphasizing the need to consider their molecular structure, 

removal methods, and correlation with clinical symptoms, 
which calls for an update of the current framework [7]. Ure-
mic toxicity has harmful effects on various organs and met-
abolic processes. Previous studies have demonstrated that 
uremic toxins with molecular weights greater than 15 kDa, 
such as cytokines, adipokines, and hormones, contribute to 
chronic inflammation, atherosclerosis, structural heart dis-
orders, and secondary immunodeficiency [6]. Therefore, it 
is important to clarify the relationship between the accu-
mulation of specific toxins, their diverse physicochemical 
characteristics, and their clinical symptoms. A more detailed 
classification of uremic toxins has been proposed based on 
the removal capabilities of the currently available dialysis 
membranes [7]. Molecules are categorized as: small (< 0.5 
kDa), small-middle (0.5–15 kDa), medium-middle (> 15–25 
kDa), large-middle (> 25–58 kDa), and large (> 58–170 
kDa). High-flux dialyzers used in standard HD can clear mol-
ecules up to 15 kDa, with this threshold increasing to 25 
kDa when used in HDF. A new class of membranes, the 
MCO membrane, allows the removal of molecules of up to 
56 kDa. Compared to high-flux membranes, MCO mem-
branes demonstrate superior clearance efficiency for larger 
molecules within the 25–56 kDa range.

EMERGENCE AND OPERATIONAL 
PRINCIPLES OF MCO MEMBRANES

The MCO membrane, a new-generation dialysis membrane, 
was developed to enable expanded HD by effectively re-
moving middle molecules up to 56 kDa. The characteristics 
and classification of the HD membranes are summarized in 
Table 1. In comparison, HCO membranes developed earlier 
to eliminate free light chains (kappa and lambda) in patients 
with myeloma kidney are associated with significant albu-
min loss owing to their large pore size, which limits their use 
for short-term therapeutic purposes [8]. 

An MCO membrane was developed to enable the clear-
ance of large middle-molecules while minimizing albumin 
loss. The MCO membrane was designed with tailored pore 
sizes and optimized to accommodate different molecular 
sizes while achieving an effective pore size (Stokes–Einstein 
radius) [9]. The Stokes–Einstein radius of the molecular 
weight cutoff was aligned with the effective pore radius of 
the membrane. MCO membranes feature an improved pore 
size distribution and adopt a tighter configuration to enable 
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effective removal of large middle-molecules in clinical prac-
tice while minimizing albumin loss [6,10]. Moreover, the 
MCO membrane increases internal filtration by reducing the 
inner diameter and wall thickness compared to traditional 
high-flux membranes, thereby enhancing its convective flow 
capacity (Fig. 1) [9]. This results in greater permeability ow-
ing to significant internal filtration in the proximal section, 
driven by an increased end-to-end pressure drop [11]. The 
improved convective transport along the fibers facilitates the 
removal of larger molecules with low diffusion coefficients. 
Adequate backfiltration in the distal part of the MCO mem-
branes eliminates the need for exogenous substitution fluids 
[12]. These unique sieving and filtration properties enable 
MCO membranes to provide expanded clearance of uremic 
toxins in the 15–45 kDa range, offering a performance com-
parable to that of high-volume HDF and superior to that of 
standard high-flux HD membranes. However, some earlier 
studies have reported that the removal efficiency of middle 
molecules, such as myoglobin and kappa- and lambda-free 
light chains, was superior in case of HDF compared with 
MCO membranes [13,14]. Other studies have demonstrated 
superior reduction ratios for MCO membranes [15]. Nota-
bly, the convective volumes used in these HDF studies var-
ied considerably—30.4 ± 4.1 L per session in the study by 
Maduell et al. [13] and 23.5 ± 3.8 L in the study by Reque 
et al. [15]—suggesting that higher convective volumes may 
enhance solute clearance. Consequently, HDF requires spe-
cific conditions to achieve optimal performance, including 
high convective volumes, high vascular access flow rates, 
and consistent use of ultrapure dialysate. These technical 
requirements may limit their broad application in clini-
cal settings. In contrast, MCO membranes, which can be 
used with a conventional dialysis infrastructure, may offer a 
more practical and accessible alternative for improving mid-
dle-molecule clearance in routine clinical practice. However, 
evidence on the long-term clinical impact of MCO mem-
branes, including their effects on cardiovascular events and 
both cardiovascular and all-cause mortality, remains limited, 
highlighting the need for further research.

There have been concerns that using an MCO membrane 
for HD could result in higher albumin loss than with high-
flux HD and HDF [16]. In a 12-month study of 638 patients 
undergoing extended HD with an MCO membrane, serum 
albumin levels showed minimal reduction, with a nadir of 
3.9 g/dL [17]. Variations remained within 5% of the baseline, 
and mean levels remained within the normal range (3.5–5.5 Ta
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g/dL). Previous studies have shown that serum albumin loss 
is comparable between MCO membrane use, high-flux HD, 
and HDF [18-20]. Over three years of treatment with MCO 
membranes, an evaluation of clinical safety revealed no sig-
nificant differences in serum albumin levels over time com-
pared to the HD group (mean monthly change difference = 
-0.0003, p = 0.855) [21]. Additionally, albumin loss with the 
use of an MCO membrane was lower than that observed 
with peritoneal dialysis [22]. Thus, although the use of MCO 
membranes may lead to a slight decrease in serum albu-
min levels, the reduction was not significant, and the levels 
generally remained within the normal range, indicating that 
they can be safely used.

CLINICAL BENEFITS OF THE MCO MEMBRANE 

Enhanced removal of large middle-molecules 
of uremic toxins 
The MCO membrane demonstrates superior removal of large 
middle-molecular uremic toxins. Previous studies have shown 
that using an MCO membrane results in better clearance 
of large middle-molecule uremic toxins, such as myoglobin 
(17.8 kDa), kappa-free light chains (25 kDa), and lambda-free 
light chains (50 kDa) than using a high-flux membrane 
[18,23]. A meta-analysis including multiple randomized and 
nonrandomized controlled trials showed that the use of 
MCO membranes significantly reduced the levels of β2-mi-
croglobulin, kappa-free light chains, and lambda-free light 
chains compared to high-flux membranes [24-26]. Further-

more, an additional in vitro study demonstrated that incu-
bating a human vascular endothelial cell line with dialyzed 
serum resulted in significantly lower levels of nuclear fac-
tor-κB and Bax in the MCO membrane group than in the 
high-flux membrane group [18]. These findings suggest 
that the MCO membrane plays a potentially beneficial role 
in the apoptosis of the human endothelium. Large mid-
dle-molecule uremic toxins in patients with chronic kidney 
disease (CKD) are significant contributors to atherosclerosis, 
inflammation, vascular calcification, and cardiovascular dis-
eases [6,27-30]. Therefore, as an advanced new-generation 
dialyzer, the MCO membrane is expected to offer several 
advantages, particularly the ability to remove large and mid-
dle-sized molecules. In our previous study, the MCO mem-
brane demonstrated significantly higher removal efficiency 
for large middle-molecules related to vascular calcification, 
such as FGF23, OPG, and sclerostin, than a high-flux mem-
brane [31]. In another study, after 12 months of using the 
MCO dialyzer, plasma sclerostin levels did not significantly 
increase compared to those in the control group, and the 
reduction ratios of substances such as sclerostin, FGF23, and 
retinol-binding protein 4 were enhanced [32]. Additional 
long-term studies are needed to assess the clinical outcomes 
of patients on HD following the removal of these large mid-
dle molecules. 

Uremic symptom and quality of life (QOL) 
improvement in patients with HD 
In patients undergoing HD, the accumulation of large mid-
dle-molecule uremic toxins contributes to issues such as re-

Figure 1. Comparison of fiber wall thickness and inner diameter in the high-flux and MCO membranes. *Revaclear 400, **Theranova 
400. MCO, medium cut-off.
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duced QOL, restless leg syndrome, and uremic pruritus. Pre-
vious studies have demonstrated improved QOL outcomes 
with the use of MCO membranes (Table 2). A randomized 
controlled study compared MCO membranes with high-flux 
membranes over 12 weeks in patients undergoing mainte-
nance HD [33]. QOL was evaluated at baseline and after 12 
weeks using the Kidney Disease Quality of Life Short Form-
36, whereas pruritus was assessed using a questionnaire 
and visual analog scale. The results demonstrated that the 
MCO group experienced significant improvements in phys-
ical functioning and the physical role components of QOL. 
Additionally, there was a reduction in the distribution of 
morning pruritus and scratching frequency during sleep. A 
study evaluating patient-reported outcomes 12 months af-
ter changing from high-flux to MCO membranes found that 
MCO-HD was linked to improved health-related QOL scores 
and a reduced prevalence of restless legs syndrome (22.1% 
at baseline to 10% at 12 months) [34]. Another study re-
ported significant improvements in general well-being, en-
ergy levels, and sleep quality after transitioning to an MCO 
membrane [35]. Another study, which used surveys con-
ducted every three months over a year following the switch 
to MCO membranes, revealed a reduction in postdialysis 
recovery time and improved perceived fatigue levels [36]. 
However, some studies have not observed improvements 
in QOL with the use of MCO membranes. In a 12-month 
follow-up randomized controlled study, there were no sig-
nificant differences between the MCO and high-flux groups 
in baseline dialysis symptom index scores, fatigue levels, or 
recovery times after dialysis [37]. Further long-term studies 
with a broader patient population are required to determine 
which individuals would benefit the most from MCO mem-
branes. 

Improvement in erythropoiesis stimulating 
agent resistance
Uremic toxins and chronic inflammation can disrupt iron 
metabolism and impair the response to erythropoiesis-stim-
ulating agents (ESA) in patients undergoing dialysis. Giv-
en these effects, the use of MCO membranes has shown 
benefits in ESA management (Table 3). A 12-week ran-
domized controlled trial comparing MCO membranes with 
high-flux membranes in maintenance HD patients revealed 
that the MCO group experienced a significant reduction in 
the ESA dose, weight-adjusted ESA dose, and erythropoi-
etin resistance index (ERI) [38]. Moreover, the serum iron 

and transferrin saturation levels were notably higher in 
the MCO group after 12 weeks. Another study examining 
changes over 6 months with MCO, high-flux, and low-flux 
membranes found that ESA requirements decreased in the 
MCO membrane group compared to the high- and low-flux 
membrane groups [39]. However, some studies did not find 
any significant effects. In a crossover study in which patients 
underwent MCO for 3 months, followed by high-flux for 3 
months (or vice versa), the parameters related to iron trans-
port and metabolism, iron usage, ESA dose, and ERI were 
similar between the MCO-HD and high-flux HD periods 
[40]. Throughout the 3-year study period, no significant dif-
ferences were observed in the average doses of darbepoetin 
(ESA) or their changes over time between the high flux and 
MCO groups [21]. Based on these studies, although the pre-
cise mechanism has not been demonstrated, expanded HD 
using an MCO membrane may benefit erythropoiesis, over-
come ESA resistance, and not seem to harm HD patients.

Effect of the MCO membrane on cardiovascular 
parameters and cardiovascular and all-cause 
mortality
The ultimate goal of effectively removing uremic toxins is to 
reduce morbidity and mortality in HD patients, particularly 
by improving cardiovascular disease, which is the leading 
cause of death in patients undergoing HD [41-44]. Conse-
quently, research has continued to explore the impact of 
MCO membranes on cardiovascular disease, cardiovascu-
lar mortality, and all-cause mortality (Table 4). In a 1-year 
randomized controlled trial comparing expanded HD using 
MCO membranes and online HDF, there were no significant 
differences in brachial-ankle pulse wave velocity or echocar-
diographic parameters between the two groups [37]. Cor-
onary artery calcium scores remained stable in the online 
HDF group, whereas an increasing trend was observed in 
the expanded-HD group. The expanded HD and online HDF 
groups exhibited similar risks of cardiovascular and all-cause 
mortalities. In a 3-year observational study, there were no 
significant differences between the groups that used MCO 
membranes and the high-flux group in terms of mortality, 
cardiovascular events, infections, or hospitalizations [21]. 
A small-scale, short-term, single-center, prospective, paral-
lel-group comparative study showed that in HD patients with 
heart failure, the group using MCO membranes achieved su-
perior removal of uremic toxins and inflammatory biomark-
ers compared to the high-flux HD group [45]. Additionally, 
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the pulse wave velocity and mean isovolumetric relaxation 
time significantly decreased after 12 weeks. In a retrospec-
tive, observational, multicenter cohort study involving 1,098 
HD patients followed up for two years, the frequency of 
nonfatal cardiovascular events was significantly lower in the 
MCO group than in the high-flux HD group [46]. However, 
no significant differences in all-cause mortality rates were 
observed. Currently, a multicenter, open-label, prospective, 
randomized study is being conducted in Spain: the MOTh-
eR HDx study trial (NCT03714386) [47]. This trial aimed to 
compare expanded HD using MCO membranes with online 
HDF by enrolling 350 patients in each group with a planned 
follow-up period of 24 months. The composite primary 
endpoint was to determine whether expanded HD was not 
inferior to online HDF in terms of global mortality, cardio-
vascular mortality, and cardiovascular events. Secondary 
outcomes included changes in hospitalization rates, QOL, 
ESA responsiveness, and other related factors. This study is 
currently underway, and the results will provide important 
guidance for the management of patients undergoing HD. 
Future research should focus on well-powered randomized 
controlled trials with a long-term follow-up to elucidate the 
potential benefits of MCO membranes on cardiovascular 
outcomes and mortality. These studies should incorporate 
robust cardiovascular endpoints such as major adverse car-
diovascular events, cardiac biomarker trends, and echo-
cardiographic parameters. Moreover, subgroup analyses 
based on comorbid conditions (e.g., diabetes, established 
cardiovascular disease, or high inflammatory status) may 
help identify populations that would benefit the most from 
MCO therapy. Head-to-head comparisons with established 
modalities such as high-volume HDF are also crucial for de-
lineating the relative clinical value of MCO membranes.

Other clinical benefits of the MCO membrane 
Other clinical benefits of MCO membranes have been re-
ported in studies of patients undergoing HD. Several studies 
have evaluated the effects of MCO membranes on hos-
pitalization rates (Table 5). In a retrospective study with a 
2-year follow-up, patients receiving HD with MCO mem-
branes demonstrated an 18% lower incidence rate of all-
cause hospitalization than those receiving high-flux mem-
brane HD [46]. After 1 year of using high-flux membranes, 
switching to MCO membranes for another year resulted in 
a minor, nonsignificant reduction in hospitalization rates 
(high-flux vs. MCO: 0.77 vs. 0.71 events/patient-year, p = Ta
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e 
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0.698) [48]. However, the number of hospital days signifi-
cantly decreased with MCO membranes (high-flux vs. MCO: 
5.94 vs. 4.41 days, p = 0.0001). In another study, a post hoc 
analysis of a 24-week randomized controlled trial found that 
MCO membranes were associated with a 45% lower all-
cause hospitalization rate than high-flux membranes [49]. 
However, the length of hospital stay was similar between 
the two groups. 

Metabolomics and proteomics, alongside transcriptomics 
and genomics, represent key areas within the “omics” re-
search spectrum [50]. They offer insights into the genome’s 
“functional” outcomes and are widely applied in kidney 
disease research [51]. In our previous study, high-flux and 
MCO membranes were used consecutively for five weeks 
each, followed by metabolomic and proteomic analyses 
[52]. During the period of MCO membrane usage, our find-
ings indicated that the use of MCO dialyzers led to distinct 
metabolomic and proteomic profiles compared to high-flux 
dialyzers. These profiles may be associated with oxidative 
stress, inflammation, insulin resistance, the complement–
coagulation axis, and nutritional factors. 

An in vitro study showed that cell-free hemoglobin (CFH) 
produced by mechanically stressed erythrocytes during ex-
tracorporeal therapies was reduced by MCO membranes 
during HD [53]. Building on these findings, a clinical study 
was conducted to investigate the effects of 12 months of 
MCO membrane use [19]. The results showed that CFH con-
centrations significantly decreased during the HD sessions 
in the MCO group. However, no significant changes in se-
rum CFH concentrations were observed from baseline to 12 
months in either the MCO or high-flux groups.

In a recent randomized controlled study, the MCO group 
showed a significantly smaller decline in glomerular filtration 
rate over 12 months than the high-flux group. It maintained 
a higher 24-h urine volume for up to 9 months [54]. The 
MCO membrane facilitates the removal of a broad range 
of middle-molecular-weight uremic toxins and inflammato-
ry mediators such as kappa- and lambda-free light chains, 
TNF-α, and GDF-15, which may contribute to the preser-
vation of residual renal function. Although the mechanisms 
underlying these renoprotective effects require further in-
vestigation, our findings suggest that MCO membranes of-
fer meaningful clinical benefits to patients undergoing HD.

ECO-FRIENDLY DIALYSIS MEMBRANE 

HD is a life-saving therapy; however, it can have environ-
mental impacts as it consumes considerable amounts of wa-
ter and energy, and generates significant waste. Addition-
ally, the amount of water used for HD varies depending on 
the treatment and modality applied. In this context, MCO 
membranes offer eco-friendly properties. HDF consumes 
substantially more water and dialysis fluid than conventional 
or expanded HD [55]. This results in increased power con-
sumption and waste production. Moreover, HDF requires 
the use of a second sterilizing ultrafilter, which further in-
creases the filter usage and contributes to additional waste 
production. MCO membranes offer benefits comparable to 
HDF but require less water because of their filtration–back-
filtration capabilities [56]. Additionally, the use of an MCO 
membrane can reduce both power consumption and waste 
production compared to HDF. Furthermore, MCO mem-
branes are smaller and lighter than high-flux membranes 
[56], which helps reduce the weight of medical waste. Be-
yond the clinical effects of MCO membranes, these environ-
mental impacts align with the goals of green dialysis [57,58].

POTENTIAL CHALLENGES AND LIMITATIONS

Most studies using MCO membranes for HD have reported 
no additional adverse events or serious complications asso-
ciated with the procedure. Although MCO dialyzers show 
promising results in removing middle-molecule uremic tox-
ins, there are limited long-term data on their impact on 
patient outcomes such as survival rates and cardiovascular 
health. In a Korean three-year cohort study comparing MCO 
membranes with high-flux membranes, there were no sig-
nificant differences in clinical efficacy and safety outcomes 
during the treatment period [21]. The levels of inflammatory 
cytokines remained stable, and there were no differences 
in the rates of death, cardiovascular events, infections, or 
hospitalization between the groups. Additional clinical trials 
should consider the diverse characteristics of patients un-
dergoing dialysis in order to determine the long-term safety 
and potential benefits of MCO membranes.

MCO membranes are not effective in removing gut-de-
rived protein-bound uremic toxins (PBUTs) and large-mole-
cule uremic toxins [20,59]. PBUTs such as indoxyl sulfate and 
p-cresyl sulfate are associated with cardiovascular disease in 

www.kjim.org


567

Kim HJ and Song SH. Current and future use of MCO membranes

www.kjim.orghttps://doi.org/10.3904/kjim.2025.049

patients with CKD [60]. Previous studies have shown that 
post-dialysis plasma levels of indoxyl sulfate and p-cresyl 
sulfate are not significantly different among high-flux HD, 
HDF, and MCO-HD [20]. 

MCO dialyzers tend to be more expensive than conven-
tional high-flux membranes, hindering their widespread 
adoption, particularly in resource-limited settings. However, 
the reduction in hospitalization rates and shorter hospital 
stays associated with MCO membrane use could lower over-
all healthcare costs, making it important to consider these 
potential savings in the evaluation [48,49]. For instance, 
one study reported that the use of MCO membranes was 
significantly associated with fewer hospitalization days and 
reduced doses of medications, including ESA, iron supple-
ments, antihypertensive drugs, and insulin [61]. This study 
estimated a 23% reduction in the annual hospitalization-re-
lated costs in the MCO group. Another study suggested 
that the use of an MCO membrane could lead to a 45% 
reduction in hospitalization rates and approximately USD 
6,098 in annual healthcare cost savings per patient [49]. Fu-
ture research, particularly large-scale randomized controlled 
trials, are required to confirm and strengthen the findings of 
this study. Further cost-effectiveness analyses are warranted 
to comprehensively evaluate the economic implications of 
adopting MCO membranes in various health care settings.

CONCLUSION 

MCO membranes represent a significant advancement in 
HD, offering improved removal of large middle-molecules 
of uremic toxins compared to traditional HD membranes 
while maintaining minimal loss of albumin. MCO mem-
branes have been shown to improve patient QOL, reduce 
ESA dose and resistance, lower hospitalization rates, and 
decrease overall healthcare costs. However, important clin-
ical questions remain unresolved, including the long-term 
safety of MCO membranes, their cost-effectiveness across 
diverse healthcare settings, and their impact on adverse out-
comes, such as cardiovascular events and all-cause mortali-
ty. It is also important to identify the patient population that 
may benefit the most from MCO membrane therapy, as its 
effects could vary depending on individual patient charac-
teristics. Future research should address these gaps through 
large-scale, multicenter randomized controlled trials and re-
al-world data analyses. As nephrology continues to evolve 

toward patient-centered and precision-based care, the role 
of MCO membranes should be further explored as part of 
a broader strategy to improve dialysis quality and long-term 
patient outcomes.
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