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Background/Aims: To analyze the characteristics of the sputum microbiota of patients with nontuberculous mycobacteria 
pulmonary disease (NTM-PD) based on treatment status. 
Methods: Twenty-eight sputum samples from 14 patients with NTM-PD, including 14 samples from the microbiologically 
cured group (7 at baseline and 7 during follow-up) and 14 from the treatment-refractory group (7 at baseline and 7 during 
follow-up) were included in this study. Bacterial microbiota was analyzed by sequencing the V3–V4 region of the 16S rRNA 
gene.
Results: Among the 14 patients, most had infections with Mycobacterium avium complex (n = 6), followed by Mycobacte-
rium abscessus (n = 5); three patients exhibited mixed infection with both organisms. Alpha-diversity was higher in the cured 
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INTRODUCTION

Nontuberculous mycobacteria (NTM) are ubiquitous organ-
isms, and nontuberculous mycobacteria pulmonary disease 
(NTM-PD) is the most common clinical manifestation of 
NTM infections [1]. The prevalence and medical burden of 
NTM-PD are increasing globally [2]. Among the causative 
NTM species, the Mycobacterium avium complex, which is 
primarily composed of M. avium and Mycobacterium intra-
cellulare, is the most common pathogen, followed by My-
cobacterium abscessus in many countries [1,3]. Although 
some patients achieve microbiological cure easily and with-
out recurrence after antibiotic treatment, others experience 
refractory disease even after several months of treatment 
[4-6]. However, the pathophysiological mechanism underly-
ing this heterogeneous treatment response remains unclear.

Microbial communities (e.g., bacteria, viruses, and fungi) 
can impact the development of human respiratory diseas-
es, with disruptions at the microbial–host interface influ-
encing disease pathogenesis [7,8]. Dysbiosis or deviation 
from the normal microbial composition is associated with 
the development and progression of respiratory diseases [9]. 
Reduced diversity is also observed in worsened respiratory 
conditions such as cystic fibrosis, asthma/chronic obstruc-
tive pulmonary disease, and idiopathic pulmonary fibrosis 
[10-12]. Because NTM do not reside in isolation but are part 
of a complex milieu of microorganisms within the host lung 
microbiome [7,13], changes in disease status or antibiotic 
treatment can alter the microbiota in patients with NTM-PD, 
as in patients with other lung diseases.

However, to date, to the best of our knowledge, no stud-
ies have analyzed the characteristics of the sputum microbi-
ota of patients with NTM-PD based on NTM microbiologi-

cal treatment status. Therefore, in this study, we compared 
the bacterial microbiota of serial sputum samples obtained 
from patients who achieved long-term stabilization without 
recurrence after microbiological cure with that of patients 
whose disease progressed without NTM eradication despite 
antibiotic treatment. Our findings elucidate the role of the 
microbial environment in the respiratory tract in determin-
ing the disease status of patients with NTM-PD.

METHODS

Study participants
From October 2018 to December 2022, we screened pa-
tients treated with antibiotics for NTM-PD who agreed to 
serial sputum sample collection in accordance with the 
treatment course. Paired sputum samples were collected 
at median intervals of 6 months from seven patients with 
NTM-PD undergoing follow-up after achieving microbiolog-
ical cure and completing treatment and from seven patients 
with NTM-PD in whom the disease persisted despite >12 
months of antibiotic treatment. Consequently, 28 sputum 
samples from 14 patients with NTM-PD were included in the 
study: 14 samples from the microbiologically cured group 
(7 at baseline and 7 during follow-up) and 14 samples from 
the treatment refractory group (7 at baseline and 7 during 
follow-up) (Supplementary Fig. 1). The bacterial microbiome 
in all sputum samples was analyzed, and the results were 
compared based on treatment status. This study was con-
ducted on a subset of individuals from the NTM Registry of 
Samsung Medical Center (ClinicalTrials.gov: NCT00970801; 
date of first registration 02/09/2009) and was approved by 
the Institutional Review Board of Samsung Medical Center 

group than in the treatment refractory group in both the baseline sputum (ACE, p = 0.005; Chao1, p = 0.010; Jackknife, p = 
0.022, 0.043; Shannon, p = 0.048) and follow-up sputum (ACE, p = 0.018). Linear discriminant analysis effect size revealed 
that several taxa showed differential distributions based on treatment status. At the species level, Streptococcus pneumoniae, 
Prevotella melaninogenica, Haemophilus parahaemolyticus, Haemophilus haemolyticus, Fusobacterium nucleatum, Neisseria 
elongata, and Prevotella denticola were more abundant in sputum from the microbiologically cured group than in that from 
the refractory group (all p < 0.05).
Conclusions: In contrast to patients with treatment-refractory NTM-PD, those with stable disease without recurrence had 
higher microbial diversity in their sputum, including several predominant taxa.
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(IRB no. 2012-05-001, the first enrollment date of eligible 
patients for this study: 02/02/2021). All patients provided 
written informed consent.

Definition of treatment outcomes
Treatment outcomes were assessed following the NTM-NET 
consensus [14]. Negative sputum culture conversion was 
defined as at least three consecutive negative sputum cul-
tures collected at a minimum of 4-week intervals. Microbi-
ological cure was defined as the maintenance of multiple 
consecutive negative cultures, without any positive cultures 
of the causative species from respiratory samples, starting 
from culture conversion and continuing until the comple-
tion of antibiotic treatment. Treatment refractory status was 
defined as sustained positive cultures with causative NTM 
species from respiratory samples after > 12 months of anti-
biotic treatment.

Sputum specimens
All sputum samples were collected under identical condi-
tions and in accordance with the sputum collection proto-
col. To minimize contamination, sputum was collected in 
the morning before the patients had eaten. Patients were 

instructed to submit their sputum during outpatient visits, 
ensuring that at least 3 mL was collected in a form that was 
visibly distinct from saliva. They were instructed to cough 
deeply into a leak-proof container. The collected sputum 
samples were immediately retrieved by the research staff 
and stored at -80°C in our institution’s laboratory. Microbi-
ome analysis was performed within 3 days.

DNA extraction from sputum and MiSeq 
sequencing
DNA extraction and MiSeq sequencing were conducted sim-
ilarly to those described in our previous research [7]. DNA 
was extracted from sputum using MP Biomedicals FastD-
NA® Spin Kit for soil (MPbio, Santa Ana, CA, USA) according 
to the manufacturer’s protocol. Subsequently, the concen-
tration and quality of the extracted DNA were measured us-
ing the Epoch™ Spectrometer (BioTek, Winooski, VT, USA). 
To analyze the bacterial microbiome, the V3–V4 region of 
the 16S rRNA gene in bacteria was amplified.

Based on the MiSeq system protocol for preparing a 16S 
metagenomics sequencing library, a second polymerase 
chain reaction (PCR) (index PCR) was performed to attach 
an index sequence and an Illumina sequencing adapt-

Table 1. Clinical characteristics of the study patients

Characteristic Total (n = 14) Microbiological cure (n = 7) Refractory (n = 7)

Age (yr) 61 (57–66) 60 (57–64) 65 (56–68)

Female 12 (85.7) 5 (71.4) 7 (100.0)

Never smoker 12 (85.7) 5 (71.4) 7 (100.0)

Comorbidity

Previous pulmonary tuberculosis 4 (28.6) 2 (28.6) 2 (28.6)

Chronic pulmonary aspergillosis 3 (21.4) 1 (14.3) 2 (28.6)

Etiology

Mycobacterium avium complexa) 6 (42.8) 4 (57.1) 2 (28.6)

Mycobacterium abscessus 5 (35.7) 2 (28.6) 3 (42.9)

Mixed infectionb) 3 (21.4) 1 (14.3) 2 (28.6)

Radiological form

Nodular bronchiectatic 12 (85.7) 5 (71.4) 7 (100.0)

Fibrocavitary 2 (14.3) 2 (28.6) -

Values are presented as median (interquartile range) or number (%).
a)Three of them were infected with Mycobacterium avium, whereas the remaining three were infected with Mycobacterium intra-
cellulare.
b)These patients had a mixed infection with both M. avium complex and M. abscessus. The mixed infection was defined as follows: 
(i) patients had at least two positive sputum cultures for each different pathogen among M. avium and M. abscessus, (ii) the time 
interval between the first isolation of each pathogen was < 6 months, and (iii) the attending physician considered both pathogens 
as the causative organisms of the disease.
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Figure 1. Alpha-diversity of the bacterial microbiota in the sputum from the cured and refractory groups: (A) baseline samples, (B) fol-
low-up samples. NTM, nontuberculous mycobacteria. Data are presented as box-and-whisker plots with median, interquartile range, and 
minimum-to-maximum values. The numbers are presented as median (interquartile range). Patients and controls were compared using 
the Wilcoxon’s two sample test or independent two sample t-test, as appropriate.
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er to the PCR product using the Nextera XT DNA Library 
Preparation Kit (Illumina, San Diego, CA, USA). The second 
PCR-completed product was purified using the QIAquick 
PCR purification kit (Qiagen, Valencia, CA, USA) and quan-
tified using the Quanti-iT PicoGreen dsDNA Assay Kit (Invi-
trogen, Waltham, MA, USA). The quality of the final library 
product was measured using the Bioanalyzer 2100 (Agilent, 
Palo Alto, CA, USA). The library products that passed quality 
control were sequenced at CJ Bioscience, Inc. (Seoul, Korea) 
according to the manufacturer’s instructions using the MiS-
eq Reagent Kit v2 (500-cycles) based on the Illumina MiSeq 
sequencing platform (Illumina).

Sequence analysis
Microbiome profiling was performed using the 16S-based 
Microbial Taxonomic Profiling (MTP) platform of the EzBio-
Cloud application, which uses the 16S database version PKS-
SU.4.0 [13]. MTP sets were constructed by grouping these 
individual MTPs, and MTP sets were compared after normal-
ization of gene copy numbers and read count. The relative 
abundance of sequences was compared between MTP sets 
using the Wilcoxon rank-sum test. Alpha-diversity was ana-

lyzed using the species richness (ACE, Chao1, Jackknife, and 
number of operational taxonomic units), whereas beta-di-
versity was evaluated using Jensen–Shannon divergence 
and visualized by principal component analysis. Permuta-
tional multivariate analysis of variance (PERMANOVA) was 
performed to analyze statistical differences in beta-diversity.

To identify differentially distributed taxa between MTP 
sets, linear discriminant analysis (LDA) was performed to 
compare the LDA effect size (LEfSe) between different 
groups. Taxa with LDA score > 3.00 in the LEfSe analy-
sis were considered significant. Significance was set at  
p < 0.05. Hotelling’s t-test was used to compare bacterial 
profiles among categories.

RESULTS

Study participants
The baseline characteristics of the patients are shown in  
Table 1. The median age of the patients was 61 years, and 
most patients (85.7%) were female. A history of pulmonary 
tuberculosis was reported by 28.6% of the patients. The M. 
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avium complex was the most common causative organism, 
followed by M. abscessus. Three patients exhibited mixed 
infection with both causative organisms. In the majority 
of patients (85.7%), a nodular bronchiectatic pattern was 
observed upon radiologic examination. The median time 
interval between the baseline and follow-up sputum sam-
ples was 6 months (interquartile range: 6–7 mo). Detailed 
information on antibiotic treatments is provided in Supple-
mentary Table 1.

Comparison of microbial diversity in sputum 
based on treatment status
The alpha-diversity of the bacterial microbiota in the base-
line sputum from the cured and refractory groups was com-
pared (Fig. 1). The baseline sputum from the cured group 
had significantly higher alpha diversity and species richness 
than that of the treatment refractory group (ACE, p = 0.005; 
Chao1, p = 0.010; Jackknife, p = 0.022, p = 0.043; Shan-
non, p = 0.048, Fig. 1A). The follow-up sputum from the 
cured group also showed higher alpha-diversity than that 
of the treatment refractory group (ACE, p = 0.018, Fig. 1B). 
The total sputum from the cured group also had significant-
ly higher alpha diversity than that of the refractory group 
(Supplementary Fig. 2).

Beta-diversity analysis to evaluate the similarity of bacteri-
al communities in the sputum from the two groups revealed 
differential species distribution in the follow-up sputum 
samples, but not in the baseline samples (Jensen–Shannon, 
PERMANOVA, p = 0.015) (Fig. 2). Differential species dis-
tribution was also observed in the total sputum from the 
cured and refractory groups (Jensen–Shannon, PERMANO-
VA, p = 0.002).

Phylum- and genus-level microbial 
proportions according to treatment status
The proportions of microbial taxa in sputum from the cured 
and refractory groups were compared at the phylum and 
genus levels. The phyla Proteobacteria, Firmicutes, and Bac-
teroidetes shared dominance in the baseline sputum from 
both groups. In the follow-up sputum, samples from the 
cured group showed higher proportions of the genera Hae-
mophilus and Campylobacter than those from the refrac-
tory group (Wilcoxon rank-sum test, p = 0.018 and 0.005, 
respectively) (Supplementary Fig. 3). In the total sputum 
from the cured and refractory groups, the genera Campylo-
bacter and Alloprevotella were more abundant in the cured 
group than in the refractory group (Wilcoxon rank-sum test,  
p = 0.013 and 0.043, respectively) (Supplementary Fig. 3).

Analysis of species distribution differences 
according to treatment status
LEfSe analysis was performed to identify species that exhib-
ited differences in distribution depending on treatment sta-
tus and collection period for all sputum collected for study. 
Baseline and follow-up sputum samples from both groups 
were assigned to one of four categories to identify taxa with 
significant differences in distribution depending on treat-
ment status and collection period (Table 2).

Several species were more abundant in the sputum 
from the microbiologically cured group than in that from 
the refractory group, including Streptococcus pneumoniae 
(LDA effect = 4.890), Prevotella melaninogenica (LDA ef-
fect = 4.555), Haemophilus parahaemolyticus (LDA effect 
= 4.001), Haemophilus haemolyticus (LDA effect = 3.913), 
Fusobacterium nucleatum (LDA effect = 3.794), Neisseria 

Table 2. LEfSe analysis for evaluating species with distribution differences based on treatment status and collection period

Taxon name
Microbiological cure (n = 14) Refractory (n = 14) LDA effect 

size
p value

Baseline Follow-up Baseline Follow-up

Streptococcus pneumoniae 16.36 17.63 0.59 2.10 4.890 0.016

Prevotella melaninogenica 9.34 6.70 4.44 2.14 4.555 0.042

Haemophilus parahaemolyticus 1.76 0.23 - 0.01 4.001 0.036

Haemophilus haemolyticus 1.21 0.83 - - 3.913 0.011

Fusobacterium nucleatum 1.27 0.59 0.07 0.13 3.794 0.032

Neisseria elongata 0.06 0.40 - - 3.333 0.001

Prevotella denticola 0.21 0.10 - - 3.173 0.031

LEfSe, linear discriminant analysis effect size, LDA, linear discriminant analysis.
LEfSe analysis included all taxa, including taxa with proportions < 1%.
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elongata (LDA effect = 3.333), and Prevotella denticola (LDA 
effect = 3.173) (all p < 0.05; Supplementary Fig. 4).

DISCUSSION

In this study, the bacterial microbiome in sputum from pa-
tients with NTM-PD who had achieved long-term stabiliza-
tion without recurrence and that from treatment refractory 
patients were compared. The sputum from cured patients 
exhibited not only high microbial diversity and richness but 
also several predominant taxa. Thus, a specific microbiome 
environment may be associated with NTM-PD disease sta-
tus, and favorability of the microbial environment may con-
tribute to disease activity in NTM-PD.

The most notable finding of our study was the prevalence 
of certain genera, including Streptococcus, Prevotella, Fuso-
bacterium, Neisseria, and Haemophilus, in the sputum from 
patients with NTM-PD exhibiting microbiological cure and 
without recurrence. Studies of the lungs of healthy partic-
ipants have shown that they harbor a microbiota in which 
the main taxa are Streptococcus, Prevotella, Fusobacterium, 
Haemophilus, and Veillonella [15-18], which suggests the 
maintenance of normal flora in the respiratory tract of stable 
patients without NTM-PD recurrence after treatment. In our 
study, the predominant bacterial species in cured patients 
were H. parahaemolyticus and H. haemolyticus. Although 
the link between the respiratory microbiome and Haemoph-
ilus remains unclear, H. haemolyticus maintains respiratory 
microbiome balance by competing with harmful bacteria 
[19]. Campylobacter and Alloprevotella were also prevalent 
in the sputum from cured patients with NTM-PD. Although 
these genera are typically present in the gastrointestinal or 
oral microbiota, some evidence has suggested that both 
are associated with pulmonary fibrosis, chronic obstructive 
pulmonary disease, and other respiratory diseases [20,21]. 
Regarding P. melaninogenica, known as a key component 
of the airway microbiota, a recent study has reported that 
the microbe is associated with reduced infection by respi-
ratory pathogens. In a mouse model, P. melaninogenica 
enhanced protection against S. pneumoniae by promoting 
rapid pathogen clearance, and this protective effect was 
mediated by the recognition of P. melaninogenica lipopro-
teins by TLR2, the induction of TNFα, and the activity of 
neutrophils [22].

These findings suggest that a stable respiratory microbial 

environment plays a role in protecting against NTM respira-
tory infections. Considering that the lung microbiome exhib-
its distinct microbial behavior compared with microbiomes 
in other sites (such as the gut, skin, and vagina) [23] and 
that the lung microbiome maintains an ecologically dynam-
ic state with complex fluxes of microbial immigration, emi-
gration, clearance, and replication of local microbes [8,24], 
further research focusing on the microbiome in accordance 
with the clinical status of NTM-PD is necessary to fully com-
prehend the relationship with the respiratory microbiome. 
The precise mechanisms by which a characteristic microbi-
ome might develop based on clinical course have not yet 
been elucidated in patients with NTM-PD. Additionally, no 
microbial taxa that exhibit antagonism against NTM have 
been identified to date. Normal flora or relatively low-vir-
ulence microbes may stimulate the host’s immune system, 
maintaining it in a “standby” state that helps prevent inva-
sion by external pathogens. However, certainly, the results 
observed so far may either be causally related or could be 
a bystander phenomenon. Therefore, additional research 
is essential to analyze microbiome changes by examining 
more samples from patients with diverse clinical courses.

Several studies have indicated that reduced microbial di-
versity is correlated with increased lung disease severity, and 
decreased alpha-diversity has been linked to increased dis-
ease severity and bacterial pathogen colonization [25-27].  
One study showed that the composition of the sputum 
microbiota at clinical baseline predicted the frequency of 
disease exacerbation in patients with bronchiectasis [28]. 
Consistent with those reports, our study identified high 
alpha-diversity in the sputum from cured patients with 
NTM-PD and low alpha diversity in the sputum from treat-
ment refractory patients. Additionally, beta-diversity analy-
sis showed compositional differences in the microbiota of 
both groups, with a significant difference between their 
follow-up samples. Thus, dysbiosis and altered microbial 
composition may be associated with NTM-PD progression.

Understanding the potential roles and mechanisms of the 
lung microbiota, particularly key functional bacteria, could 
offer new therapeutic targets for NTM-PD. Novel potential 
therapeutic approaches could involve the use of probiotics 
(live bacteria designed to improve health), prebiotics (food 
ingredients that induce specific changes in the microbiome), 
or antibiotics. Modifying the airway microbiota composition 
may range from targeting and eliminating specific strains of 
a single species to completely replacing the existing microbi-
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al community with a new, intact airway microbiota. Howev-
er, research on the relationship between NTM and the lung 
microbiome is still in its early stages, and unfortunately, the 
current research data is insufficient to be actively applied 
clinically in the treatment of NTM-PD. Therefore, further re-
search is needed.

This study has several limitations. First, the number of pa-
tients was small, and the population included patients with 
NTM-PD with different disease phenotypes. Differences in 
NTM strains and varying degrees of disease severity result-
ed in different airway microbiota and inflammatory signa-
tures. Moreover, within the same individual, topographical 
differences in the lung microbiome were observed. Con-
sidering the limited number of patients in this study, fur-
ther research involving a large patient cohort is necessary. 
A more comprehensive analysis, adjusting for confound-
ing variables such as age and sex, should be conducted to 
examine differences among NTM subspecies, distinctions 
between radiological forms, and variations between initial 
treatment and retreatment with antibiotics. This would en-
hance our understanding of the microbiome characteristics 
in NTM-PD. Moreover, the inclusion of control groups, such 
as healthy adults or individuals with other respiratory dis-
eases (e.g., asthma), which was not feasible in this study, 
will be essential for subsequent research. Second, several 
factors could influence the lung microbiota and potentially 
affect the results of this study, such as the host immune 
response, lifestyle, diet, cigarette smoking, and use of anti-
biotics. Unfortunately, these confounding factors were not 
fully considered, as they could not be controlled within the 
scope of this research. Third, the low alpha- and beta-diver-
sity determined in the treatment refractory group may have 
been influenced by long-term antibiotic administration and 
NTM-PD progression. Lastly, taxonomic profiling of the mi-
crobiome based on the 16S rRNA gene does not fully reflect 
the population of live, metabolically active organisms.

In conclusion, our study showed that among patients 
with NTM-PD, patients who maintained long-term disease 
stabilization without recurrence exhibited higher microbial 
diversity in the sputum compared with treatment refrac-
tory patients. Several predominant genera were identified 
in samples from the cured group, including Streptococcus, 
Prevotella, Fusobacterium, Neisseria, and Haemophilus. A 
specific microbiome environment may contribute to the sta-
bilization and cure of NTM-PD.

KEY MESSAGE
1.	 In patients with NTM-PD, those who maintained 

long-term disease stabilization without recurrence 
showed several dominant species distributions with 
higher microbial diversity compared with refractory 
patients.
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Supplementary Figure 1. Study samples. (A) Seven patients undergoing follow-up after achieving microbiological cure without antibiot-
ics. (B) Seven patients in whom NTM persisted despite receiving antibiotic treatment for over 12 months. NTM, nontuberculous mycobac-
teria.
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Supplementary Figure 2. Box plots of alpha-diversity indices of all sputum samples (n = 28) from the microbiological cure group (n = 
14) and refractory group (n = 14). NTM, nontuberculous mycobacteria.
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Supplementary Figure 3. Comparison of abundance in the genera level between the microbiological cure and refractory groups. (A) 
Follow-up sputum samples and (B) total sputum samples.
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Supplementary Figure 4. Comparison of abundance in species level between the four subgroups. NTM, nontuberculous mycobacteria.
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Supplementary Table 1. Detailed information on antibiotic treatment

Variable Total (n = 14) Microbiological cure (n = 7) Refractory (n = 7)

Macrolide 14 (100.0) 7 (100.0) 7 (100.0)

Duration (mo) 30 (16–40) 27 (13–38) 31 (26–76)

Ethambutol 9 (64.3) 5 (71.4) 4 (57.1)

Duration (mo) 14 (13–15) 13 (13–15) 14 (10–15)

Rifampicin/rifabutin 8 (57.1) 3 (42.8) 5 (71.4)

Duration (mo) 16 (13–20) 13 (12–16) 17 (15–23)

Fluoroquinolone 2 (14.3) - 2 (28.6)

Duration (mo) 2 (1–3) - 2 (1–3)

IV Amikacin 7 (50.0) 2 (28.6) 5 (71.4)

Duration (mo) 39 (25–102) 112 (39–184) 26 (25–52)

Inhaled amikacin 7 (50.0) 2 (28.6) 5 (71.4)

Duration (mo) 40 (20–93) 110 (40–181) 20 (20–53)

Imipenem/meropenem 7 (50.0) 2 (28.6) 5 (71.4)

Duration (mo) 2 (2–9) 2 (2–2) 6 (2–9)

Tigecycline 7 (50.0) 2 (28.6) 5 (71.4)

Duration (mo) 8 (4–19) 3 (0–6) 9 (8–19)

Clofazimine 7 (50.0) 2 (28.6) 5 (71.4)

Duration (mo) 34 (18–51) 27 (18–37) 34 (32–51)

Linezolid 2 (14.3) 0 (0.0) 2 (28.6)

Duration (mo) 3 (2–4) - 3 (2–4)

Values are presented as number (%) or median (interquartile range).
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