ORIGINAL ARTICLE

Korean J Intern Med 2025;40:251-261
https://doi.org/10.3904/kjim.2024.130

.
2 KJIM

Explainable paroxysmal atrial fibrillation
diagnosis using an artificial intelligence-enabled
electrocardiogram

Yeongbong Jin* Bonggyun Ko?** Woojin Chang', Kang-Ho Choi**, and Ki Hong Lee ¢’

'Department of Industrial Engineering, Seoul National University, Seoul; 2Department of Mathematics and Statistics, Chonnam National
University, Gwangju; >XRAl, Gwangju; “Department of Neurology, Chonnam National University Hospital, Gwangju; *Department of Neurology,
Chonnam National University Medical School, Gwangju; *Department of Internal Medicine, Chonnam National University Hospital, Gwangju;
"Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea

*These authors contributed equally to this manuscript.

Explainable paroxysmal atrial fibrillation diagnosis using an
Al-enabled electrocardiogram
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A total of 552,372 electrocardiogram (ECG) recordings from significant role in the model’s ability to diagnose PAF.
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C I = Deep learning can predict AF onset from NSR while detecting key features that influence decisions. This suggests that identifying undetected
onclusion AF may serve as a predictive tool for PAF screening, offering valuable insights into cardiac dysfunction and stroke risk.

Background/Aims: Atrial fibrillation (AF) significantly contributes to global morbidity and mortality. Paroxysmal atrial fibril-
lation (PAF) is particularly common among patients with cryptogenic strokes or transient ischemic attacks and has a silent
nature. This study aims to develop reliable artificial intelligence (Al) algorithms to detect early signs of AF in patients with nor-
mal sinus rhythm (NSR) using a 12-lead electrocardiogram (ECG).

Methods: Between 2013 and 2020, 552,372 ECG traces from 318,321 patients were collected and split into training (n =
331,422), validation (n = 110,475), and test sets (n = 110,475). Deep neural networks were then trained to predict AF onset
within one month of NSR. Model performance was evaluated using the area under the receiver operating characteristic curve
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(AUROC). An explainable Al technique was employed to identify the inference evidence underlying the predictions of deep
learning models.

Results: The AUROC for early diagnosis of PAF was 0.905 + 0.007. The findings reveal that the vicinity of the T wave, in-
cluding the ST segment and S-peak, significantly influences the ability of the trained neural network to diagnose PAF. Addi-
tionally, comparing the summarized ECG in NSR with those in PAF revealed that nonspecific ST-T abnormalities and inverted
T waves were associated with PAF.

Conclusions: Deep learning can predict AF onset from NSR while detecting key features that influence decisions. This sug-
gests that identifying undetected AF may serve as a predictive tool for PAF screening, offering valuable insights into cardiac

dysfunction and stroke risk.

Keywords: Atrial fibrillation; Deep learning; Electrocardiography; Artificial intelligence; Paroxysmal atrial fibrillation

INTRODUCTION

Atrial fibrillation (AF), a prevalent form of arrhythmia, is as-
sociated with severe cardiovascular conditions and stands as
a leading cause of mortality and morbidity [1,2]. AF signifi-
cantly contributes to ischemic stroke associated with throm-
boembolism, a risk that anticoagulation can effectively pre-
vent [3-8]. Nonetheless, AF often progresses without any
clinical manifestation. Therefore, early detection and diag-
nosis of AF from normal conditions could support a compre-
hensive management system, potentially improving survival
rates and alleviating disease burden.

Electrocardiogram (ECG) is the most widely used meth-
od for cardiovascular diagnostics and can offer significant
prognostic insights [9]. However, screening for AF remains
challenging, as many patients exhibit paroxysmal and as-
ymptomatic features [1,2,10-12]. Although intermittent
ECG screening or opportunistic pulse palpation provides a
common, cost-effective approach to detect AF, several cases
go undetected, and identifying the prevalence of AF poses
a more fundamental issue than the choice of a screening
strategy [13-15] Certain features of ECG, especially P waves,
are often used to diagnose early AF [16-18]. However, they
lack sufficient probability to be clinically useful in statisti-
cal models [7]. Machine learning algorithms, such as deep
neural networks, can address these limitations by uncover-
ing intricate patterns within large-scale datasets, and they
demonstrate effectiveness in tasks including early AF detec-
tion and ECG classification [19-23].

Deep learning approaches advance beyond traditional
pattern-based methods to detect paroxysmal atrial fibrilla-
tion (PAF) [6-8]. When these models are trained, probabi-
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listically distinguishing PAF by learning data features from
large ECG datasets is possible. However, studies show that
the current deep learning systems prioritize reducing pre-
diction errors over providing the significance of features or
explaining what drives the networks [7,8]. This focus limits
their operational usefulness and reduces the reliability of
deep learning outputs in healthcare.

Therefore, this study aims to develop an artificial intelli-
gence (Al) model to distinguish subtle patterns in a standard
12-lead ECG that are imperceptible to the human eye. To
test this, we trained a deep neural network using a large
cohort of patients from a tertiary hospital. Additionally, we
interpreted the inference engine of the model to uncover
the basis of its decisions.

METHODS

Data sources and study population

We extracted standard 12-lead ECGs for patients with at
least one instance of normal sinus rhythm (NSR) recorded
between May 16, 2013 and December 31, 2020. Each
ECG was captured at a 500 Hz sampling rate, with raw
data stored in the MUSE cardiology information system (GE
Healthcare, Chicago, IL, USA).

The extracted ECG data included 10-s recordings. The
guantitative measurements from ECG clinical reports were
analyzed to identify diagnostic class and 18 patient features.
These features were age, sex, ventricular/atrial rate, QRS du-
ration/count, QTc (Bazett/Fridericia correction), QT interval,
PR interval, the axes of P, R, and T waves, T-offset and on/
offset of P and Q. Each variable had a missing value rate
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of 0-24.7%, with the highest percentage being sex. For
cases with missing values, due to reasons such as privacy
constraints, we imputed values to denote the absence of
information.

In the prepared data, we excluded 95,398 ECGs where
patient ID was not tracked and 287,247 ECGs where diag-
nostic classification was unavailable for AF or NSR. Rhythm
diagnosis and labeling were carefully performed by clinical
experts to ensure reliability before further analysis. These
annotations were further validated using the electronic
medical records of the patients, cross-referencing for AF
diagnosis codes or documented history. Only AF diagnosis
codes or previous history without a documented 12-lead
ECG were not classified as PAF.

In the ECG clinical report of a patient, NSR recorded
within 31 days following the first AF episode was labeled
as "PAF.” This broader definition, extending beyond the
standard definition of PAF (AF episodes lasting under 7 days
without intervention), enabled a comprehensive assessment
of early AF episodes. The ECGs recorded more than 31 days
after the first AF episode and those taken before the first
onset were excluded. ECGs with consistent NSR across clin-
ical records were annotated as ‘Normal.” After annotation,
we categorized patients into PAF and control groups and
then deidentified the ECG data to remove personal ID. This
approach ensured that subtle ECG patterns related to PAF
were robustly identified, independent of individual charac-
teristics.

KJIM™

We initially extracted 1,014,617 raw ECGs from 422,664
patients. From these, 95,398 ECGs with incomplete PID
tracking or missing data were excluded, as well as 287,247
ECGs without AF records or NSR. Additionally, sinus rhythm
ECGs immediately preceding the first AF event were exclud-
ed to avoid recording transitional ECG patterns that may not
accurately reflect the early characteristics of PAF [7], thereby
reducing noise and enhancing model prediction accuracy.
ECGs were annotated as normal if all serial recordings for
a patient showed NSR, while ECG records within the tar-
get window were labeled as PAF. After applying certain ex-
clusions (Fig. 1), the dataset included 552,372 ECGs from
318,321 patients. Applying predefined labeling protocol,
26,541 ECGs (4.8%) were annotated as PAF, reflecting
similar prevalence rates in the general population [24]. The
processed ECGs were divided into training (60%), validation
(20%), and test datasets (20%) for model training.

Algorithm development and evaluation for
PAF early detection

The convolutional neural network (CNN)-based statistical
model for early PAF detection was developed using patient
demographics and raw ECG data as input. The CNN model
was designed to identify patterns and extract local spatial
features from global maps using filters that apply each in-
put subregion through dot product operations [25]. Given
the seasonality and fixed length of ECG signals, 1d-CNN is
the most appropriate to apply [26]. The network architec-

422,664 patients with 1,014,617 ECGs eligible

—

y

4

462,245 ECGs and 104,343 patients excluded
95,398 ECGs with unidentified PID or missing
ECG leads
287,247 ECGs with no atrial fibrillation record or
non-sinus rhythm
79,600 normal sinus rhythm ECGs recorded before
the window of the interest (31 days)

318,321 patients with 552,372 normal sinus rhythm
ECGs included in the analysis

.

331,422 ECGs (60%) included
in the training dataset

|
:

110,475 ECGs (20%) included
in the internal validation
dataset

.

110,475 ECGs (20%) included
in the testing dataset

Figure 1. Summary of data used in the study. Diagram summarizing patient selection for training, validation, and testing cohorts. ECG,

electrocardiogram; PID, patient identification.
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ture for analyzing standard 12-lead ECGs (sampled at 500
Hz) included 50 convolutional layers, using the skip-connec-
tion method of the residual network [27] to ensure effec-
tive training. The model we used consisted of 16 residual
blocks, each containing three convolution layers, followed
by a Batch Normalization and rectified linear activation func-
tion (ReLU) applied after each layer [28,29]. Where the out-
put feature map dimensions decrease, a convolutional layer
with a stride of 2 was applied to ensure alignment between
input and output dimensions. Pooling was conducted at the
first and last layers after the nonlinear activation function. A
feature vector was then extracted from the ECG by applying
two fully connected (FC) layers with ReLU activations. Final-
ly, this feature vector was concatenated with a 12-lead ECG
feature vector, which produced class probabilities via a final
FC layer and softmax function. The network weights were
initialized following the He method, and the model was op-
timized using the Adam algorithm with default parameters
B1 =0.9 and 2 = 0.999 [30,31]. The batch size was 32,
with a learning rate of 1 x 104, halved every 10 epochs.
Figure 2 depicts the overall architect of our model.

Additionally, focal loss was used to address data imbal-
ance. This loss function—a variation of cross entropy—
counteracts extreme interclass imbalances by assigning
lower weights to easily classified negatives to reduce their
contribution to learning while increasing weights for chal-
lenging positives that are harder to classify [32]. Hyperpa-
rameters for the network structure and loss function used
were set through grid search and manual tuning.

We trained 30 models using different dataset configura-
tions generated through pseudo-random number sampling.
The model performance was evaluated using the area un-
der the curve (AUC) metric, a key performance indicator in
binary classification where a higher AUC indicates better
performance. To further evaluate the generalizability and
stability of the model, we recorded the AUC of the devel-
oped models.

Identify contributors to PAF early detection
through LRP

The interpretability of complex deep-learning models re-
mains a major concern in the medical field. Enhancing
model transparency can improve acceptance in clinical de-
cision-making and justify specific diagnoses and treatment
recommendations [33]. Layer-wise relevance propaga-
tion (LRP) is a prominent method for interpreting complex
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Figure 2. Network architecture. Network architecture used in
the study. Our network processes raw ECG data (sampled at 500
Hz) and ECG features to predict AF onset within a month. ECG,
electrocardiogram; RelU, rectified linear activation function; PAF,
paroxysmal atrial fibrillation; AF, atrial fibrillation.
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deep-learning models by measuring the contribution of
each input to the output of the model [34]. It functions by
estimating and decomposing the layer-level contributions
presenting relevance scores for input features as a heatmap.
We calculated the relevance score of each input value by
backpropagating from the class score of the output node

Sensitivity

@ All ECGs (AUC 0.905)

® Predict negative (AUC 0.826)

® Predict positive (AUC 0.702)

0 T T T T 1
0 0.2 0.4 0.6 0.8 1.0

1-Specificity

Figure 3. Model performance. ROC curves of the trained model
for all data (black), negative prediction ECG subset (blue), and
positive prediction ECG subset (red). ECG, electrocardiogram;
AUC, area under the curve; ROC, receiver operating characteristic.
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to the input layer, scaling values between 0 and 1 across all
leads. This produced a scaled relevance score for each input
dimension. To elucidate factors influencing early PAF diag-
nosis, we interpreted LRP from the following perspectives:
leads and intervals. Lead contributions were identified by av-
eraging relevance scores for each lead across classifications.
To maintain consistency and facilitate model interpretation,
the ECG summary process was referenced and applied to
relevance scores. Next, the ECG intervals were confirmed by
summarizing key ECG measurements obtaining the average
value of the relevance score for each interval.

Ethics statement

The Institutional Review Board of Chonnam National Uni-
versity Hospital approved this study with a waiver of consent
(CNUH-2021-158), adhering to institutional patient privacy
policies.

RESULTS

In the training, validation, and test datasets, age and sex dis-
tributions were similar between the PAF and normal groups.
Table 1 presents the patient characteristics for PAF and nor-
mal groups across each dataset. Categorical variables are
shown as absolute numbers or percentages, while contin-

Table 2. Average of relevance scores for each ECG lead in the confusion matrix

Lead True negative True positive False negative False positive
| 0.3410 0.4319 0.4320 0.3765
Il 0.3193 0.4228 0.4200 0.3488
I 0.3696 0.4470 0.4429 0.3994
aVvR 0.5525 0.5042 0.5083 0.5123
avL 0.3574 0.4397 0.4378 0.3950
avF 0.2980 0.4134 0.4097 0.3313
V1 0.4287 0.4710 0.4693 0.4400
V2 0.3758 0.4518 0.4503 0.3979
V3 0.3624 0.4483 0.4453 0.3887
V4 0.3237 0.4262 0.4242 0.3468
V5 0.3332 0.4258 0.4264 0.3529
V6 0.3730 0.4398 0.4438 0.3906
ECG features 0.0000 0.0000 0.0000 0.0000

ECG, electrocardiogram.

Based on the classification results of the test dataset, the average relevance score for each lead was calculated, with scores ranging
from 0 to 1; higher values indicate a greater influence on classification results.
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uous variables are reported as mean + standard deviation.
Categorical and continuous variables were compared using
the chi-square test and Student’s t-test, respectively.

Model training involved 331,422 ECGs, with a mean pa-
tient age of 55.9 +£19.2 years at the date of the ECG re-
cording. Of these, 129,342 (51.8%) ECGs were from male
patients, and 15,887 (4.8%) were labeled as PAF. The in-
ternal validation set included 110,475 ECGs, with a mean
age of 55.9 £19.2 years; 43,098 (51.9%) were male, and
5,353 (4.8%) were PAF cases. The test dataset also includ-
ed 110,475 ECGs, with a mean age of 55.7 £19.2 years;
42,880 (51.6%) were male, and 5,301 (4.8%) were PAF
cases. Cases lacking age (n = 64,587; 11.7%) and sex infor-
mation (n = 136,243; 24.7%) were treated as noise during
model training.

avL
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Evaluation of model performance

The limited number of positive cases required for effective
training was a critical barrier when applying deep learning
to diagnose PAF. To address this class imbalance, we em-
ployed focal loss as a loss function of CNN. This technique
reduces the influence of easy negative cases while assigning
greater weight to hard positive cases, thereby enhancing
model accuracy. Here, we implemented a CNN model that
inputs ECG data with features such as age, sex, and ECG
parameters. Model performance was evaluated using the
area under the curve of the receiver operating characteris-
tic curve (AUROC). To understand the generalizability and
stability of the model, 30 datasets were generated through
pseudo-random sampling and trained individually against
the corresponding test dataset. The performance results
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Figure 4. Identification of major contributors to PAF diagnosis through model explainability with the LRP method. Overlay of summarized
ECG signals for all true positive (black) and negative (blue) cases. The ECG signals for each lead are aligned and interpolated into one sig-
nal. The LRP projection map for true positives is highlighted in red, with the darker red regions indicating a stronger contribution to PAF
diagnosis. LRP, layer-wise relevance propagation; ECG, electrocardiogram; PAF, paroxysmal atrial fibrillation.
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showed a sensitivity, specificity, and F1 score of 0.722 +
0.015, 0.906 + 0.006, and 0.542 + 0.011, respectively. The
AUC for early PAF diagnosis was 0.905 + 0.007. Class-spe-
cific predictive accuracy was 0.826 + 0.011 for negative
cases (Fig. 3, blue) and 0.702 + 0.019 for the positive cases
(Fig. 3, red).

Interpreting the inference process of the deep
learning model

Although our model showed strong performance in diag-
nosing PAF using large-scale data, interpreting the inference
process of the deep learning model remains challenging.
We used the LRP method to explore the ECG leads and in-
tervals that affected PAF prediction. The P wave is clinical-
ly known to affect the diagnosis of PAF [18,21,35,36]. We
hypothesized that critical factors could influence prediction
more subtly, which could be revealed by analyzing ECG con-
tribution.

To explain the deep learning explanation technique
on ECG records, we used the LRP method to identify key
ECG leads and intervals. First, the average relevance scores
of each ECG lead in the confusion matrix were calculated
(Table 2). Regardless of prediction results, the aVR lead had
the highest relevance score, indicating it as the most refer-
enced by the model in PAF diagnosis. In contrast, other ECG
features showed low relevance scores, suggesting limited
predictive effect. To identify the most significant interval for
PAF diagnosis and minimize mutual cancellation of ECG sig-
nals, we constructed an averaged ECG by aligning, sorting,
and interpolating each QRS complex based on the R-peaks.
Figure 4 displays this summarized ECG along with LRP inten-
sities for the true positive cases. We summarized ECGs for

Table 3. Relevance scores for each ECG interval

Interval Alert Index
PR interval 0.2078
PR segment 0.1909
QRS complex 0.3254
ST segment 0.3973
ST interval 0.3109
QT interval 0.3249

ECG, electrocardiogram.

The average relevance score according to major ECG intervals
for true-positive cases, scaled to account for the influence of
all leads.
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true positives (Fig. 4, black) and negatives (Fig. 4, blue) for
each lead. These summaries reveal a significant difference
in the ST segment and T wave regions. In particular, the
true positives showed T wave depression, suggesting that
an inverted (or flattened) T wave may influence the PAF di-
agnosis. The T waves, indicating ventricular repolarization
[37], are commonly classified as nonspecific ST-T abnormal-
ities (NSTTA) when flattened. To identify the most signifi-
cant ECG interval in PAF diagnosis, the average LRP weights
across intervals were compared (Table 3). The ST segment
and QRS complex emerged as the strongest predictors for
PAF. We concluded that NSTTA could be a characteristic
associated with PAF. Studies show that ST segment depres-
sion and T wave inversion are significant markers for cardio-
vascular disease, with T wave inversion linked to increased
mortality risk [38,39]. Additionally, transient ST segment de-
pression has been observed during PAF episodes and linked
to underlying coronary artery disease [40]. These findings
indicate the association between NSTTA and PAF, which is
consistent with our results, underscoring the significance of
NSTTA and inverted T waves in predicting early PAF diagno-
sis, further emphasizing their clinical relevance in arrhythmia
detection. However, the relationship between NSTTA and
PAF has received limited attention, and our analysis confirms
that a flattened T wave influences PAF diagnosis. This sug-
gests that T waves could serve as novel predictors for early
PAF detection and that deep learning models can effectively
reveal complex mechanisms in PAF diagnosis.

DISCUSSION

In this study, we demonstrate the development and anal-
ysis of an explainable deep learning algorithm applied to
ECG data for early PAF detection. The model showed strong
classification performance, even with relatively few positive
cases, reflecting the prevalence of PAF in the general pop-
ulation. Across 30 different, nonoverlapping datasets, the
model consistently performed well, with an AUC of 0.905 +
0.007. These findings suggest the potential for clinical tests
to prescreen patients at risk of onset PAF during NSR.

The explainability of deep learning closely relates to the
reliability of the model output. Identifying potential patterns
of AF is crucial, as many PAF cases are asymptomatic. We
aim to uncover patterns of AF onset in ECGs primarily classi-
fied as NSR. Direct analysis is challenging due to the variabil-
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ity in individual ECG characteristics. Using the classification
results of the Al model, the outputs were summarized based
on the QRS complex, key contributors to model inference
were identified for each major interval, and the ECGs were
compared between the control and PAF groups. Our deep
learning inference analysis revealed that the model refer-
enced the aVR lead most frequently in PAF diagnosis, with
the ST segment exerting the greatest influence among ECG
intervals. Additionally, ECG features such as age, sex, and PR
interval contributed minimally, suggesting that ECG signals
may interact nonlinearly in some cases of early PAF detec-
tion, which traditional methods cannot fully explain. These
findings suggest that the proposed model predicts poten-
tial ventricular dysfunction, indicating structural changes
that preidentify the disease before AF onset. We identified
a previously undescribed and significant role of NSTTA in
PAF diagnosis. However, further research into the role of
NSTTA and T wave variations is essential to understand their
clinical significance in diagnosing PAF. Additional studies are
needed to examine how these ECG features might enhance
diagnostic accuracy and improve Al model performance in
predicting PAF.

Screening strategies under atypical conditions, such as
PAF, face inherent limitations owing to false-positive or
low-positive cases. To address this, we trained the model
with higher weighting on positive cases. Consequently, the
model demonstrated high negative predictive value, sup-
porting the feasibility of a low-cost screening test. We be-
lieve the described methods may benefit numerous clinical
situations. For instance, the output of the model could serve
as an alert index. Primary cardiologists can leverage early
detection tools to proactively assess the safety of surgical
procedures or pacing modalities. This study has some limita-
tions, including its single-center design, which requires val-
idation across diverse healthcare systems. Data imbalance
may influence specificity and AUROC, and the absence of
personalized information extraction hinders individualized
analysis. Additionally, ECG summarization based on true
positive and negative cases may reduce detail on specific
ECG intervals. In conclusion, an Al model based on standard
12-lead ECG data can predict future AF onset in NSR, with
model inference rationale analyzed. Through external vali-
dation in more varied cohorts, our model can enhance PAF
screening strategies and serve as a proactive clinical tool.
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KEY MESSAGE

1. Developed a deep learning model to diagnose AF
onset in potential patients exhibiting NSR.

2. Employed a deep learning explanation method to
verify the decision basis of the model and investi-
gated ECG patterns influencing the results.

3. Indicating a potential association between NSTTA
and PAF, highlighting the need for future validation
across various systems.
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