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Background/Aims: Atrial fibrillation (AF) significantly contributes to global morbidity and mortality. Paroxysmal atrial fibril-
lation (PAF) is particularly common among patients with cryptogenic strokes or transient ischemic attacks and has a silent 
nature. This study aims to develop reliable artificial intelligence (AI) algorithms to detect early signs of AF in patients with nor-
mal sinus rhythm (NSR) using a 12-lead electrocardiogram (ECG).
Methods: Between 2013 and 2020, 552,372 ECG traces from 318,321 patients were collected and split into training (n = 
331,422), validation (n = 110,475), and test sets (n = 110,475). Deep neural networks were then trained to predict AF onset 
within one month of NSR. Model performance was evaluated using the area under the receiver operating characteristic curve 
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INTRODUCTION

Atrial fibrillation (AF), a prevalent form of arrhythmia, is as-
sociated with severe cardiovascular conditions and stands as 
a leading cause of mortality and morbidity [1,2]. AF signifi-
cantly contributes to ischemic stroke associated with throm-
boembolism, a risk that anticoagulation can effectively pre-
vent [3-8]. Nonetheless, AF often progresses without any 
clinical manifestation. Therefore, early detection and diag-
nosis of AF from normal conditions could support a compre-
hensive management system, potentially improving survival 
rates and alleviating disease burden. 

Electrocardiogram (ECG) is the most widely used meth-
od for cardiovascular diagnostics and can offer significant 
prognostic insights [9]. However, screening for AF remains 
challenging, as many patients exhibit paroxysmal and as-
ymptomatic features [1,2,10-12]. Although intermittent 
ECG screening or opportunistic pulse palpation provides a 
common, cost-effective approach to detect AF, several cases 
go undetected, and identifying the prevalence of AF poses 
a more fundamental issue than the choice of a screening 
strategy [13-15] Certain features of ECG, especially P waves, 
are often used to diagnose early AF [16-18]. However, they 
lack sufficient probability to be clinically useful in statisti-
cal models [7]. Machine learning algorithms, such as deep 
neural networks, can address these limitations by uncover-
ing intricate patterns within large-scale datasets, and they 
demonstrate effectiveness in tasks including early AF detec-
tion and ECG classification [19-23].

Deep learning approaches advance beyond traditional 
pattern-based methods to detect paroxysmal atrial fibrilla-
tion (PAF) [6-8]. When these models are trained, probabi-

listically distinguishing PAF by learning data features from 
large ECG datasets is possible. However, studies show that 
the current deep learning systems prioritize reducing pre-
diction errors over providing the significance of features or 
explaining what drives the networks [7,8]. This focus limits 
their operational usefulness and reduces the reliability of 
deep learning outputs in healthcare. 

Therefore, this study aims to develop an artificial intelli-
gence (AI) model to distinguish subtle patterns in a standard 
12-lead ECG that are imperceptible to the human eye. To 
test this, we trained a deep neural network using a large 
cohort of patients from a tertiary hospital. Additionally, we 
interpreted the inference engine of the model to uncover 
the basis of its decisions.

METHODS

Data sources and study population
We extracted standard 12-lead ECGs for patients with at 
least one instance of normal sinus rhythm (NSR) recorded 
between May 16, 2013 and December 31, 2020. Each 
ECG was captured at a 500 Hz sampling rate, with raw 
data stored in the MUSE cardiology information system (GE 
Healthcare, Chicago, IL, USA).

The extracted ECG data included 10-s recordings. The 
quantitative measurements from ECG clinical reports were 
analyzed to identify diagnostic class and 18 patient features. 
These features were age, sex, ventricular/atrial rate, QRS du-
ration/count, QTc (Bazett/Fridericia correction), QT interval, 
PR interval, the axes of P, R, and T waves, T-offset and on/
offset of P and Q. Each variable had a missing value rate 

(AUROC). An explainable AI technique was employed to identify the inference evidence underlying the predictions of deep 
learning models.
Results: The AUROC for early diagnosis of PAF was 0.905 ± 0.007. The findings reveal that the vicinity of the T wave, in-
cluding the ST segment and S-peak, significantly influences the ability of the trained neural network to diagnose PAF. Addi-
tionally, comparing the summarized ECG in NSR with those in PAF revealed that nonspecific ST-T abnormalities and inverted 
T waves were associated with PAF.
Conclusions: Deep learning can predict AF onset from NSR while detecting key features that influence decisions. This sug-
gests that identifying undetected AF may serve as a predictive tool for PAF screening, offering valuable insights into cardiac 
dysfunction and stroke risk.
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of 0–24.7%, with the highest percentage being sex. For 
cases with missing values, due to reasons such as privacy 
constraints, we imputed values to denote the absence of 
information. 

In the prepared data, we excluded 95,398 ECGs where 
patient ID was not tracked and 287,247 ECGs where diag-
nostic classification was unavailable for AF or NSR. Rhythm 
diagnosis and labeling were carefully performed by clinical 
experts to ensure reliability before further analysis. These 
annotations were further validated using the electronic 
medical records of the patients, cross-referencing for AF 
diagnosis codes or documented history. Only AF diagnosis 
codes or previous history without a documented 12-lead 
ECG were not classified as PAF.

In the ECG clinical report of a patient, NSR recorded 
within 31 days following the first AF episode was labeled 
as “PAF.” This broader definition, extending beyond the 
standard definition of PAF (AF episodes lasting under 7 days 
without intervention), enabled a comprehensive assessment 
of early AF episodes. The ECGs recorded more than 31 days 
after the first AF episode and those taken before the first 
onset were excluded. ECGs with consistent NSR across clin-
ical records were annotated as ‘Normal.’ After annotation, 
we categorized patients into PAF and control groups and 
then deidentified the ECG data to remove personal ID. This 
approach ensured that subtle ECG patterns related to PAF 
were robustly identified, independent of individual charac-
teristics.

We initially extracted 1,014,617 raw ECGs from 422,664 
patients. From these, 95,398 ECGs with incomplete PID 
tracking or missing data were excluded, as well as 287,247 
ECGs without AF records or NSR. Additionally, sinus rhythm 
ECGs immediately preceding the first AF event were exclud-
ed to avoid recording transitional ECG patterns that may not 
accurately reflect the early characteristics of PAF [7], thereby 
reducing noise and enhancing model prediction accuracy. 
ECGs were annotated as normal if all serial recordings for 
a patient showed NSR, while ECG records within the tar-
get window were labeled as PAF. After applying certain ex-
clusions (Fig. 1), the dataset included 552,372 ECGs from 
318,321 patients. Applying predefined labeling protocol, 
26,541 ECGs (4.8%) were annotated as PAF, reflecting 
similar prevalence rates in the general population [24]. The 
processed ECGs were divided into training (60%), validation 
(20%), and test datasets (20%) for model training.

Algorithm development and evaluation for 
PAF early detection
The convolutional neural network (CNN)-based statistical 
model for early PAF detection was developed using patient 
demographics and raw ECG data as input. The CNN model 
was designed to identify patterns and extract local spatial 
features from global maps using filters that apply each in-
put subregion through dot product operations [25]. Given 
the seasonality and fixed length of ECG signals, 1d-CNN is 
the most appropriate to apply [26]. The network architec-

Figure 1. Summary of data used in the study. Diagram summarizing patient selection for training, validation, and testing cohorts. ECG, 
electrocardiogram; PID, patient identification.

422,664 patients with 1,014,617 ECGs eligible

318,321 patients with 552,372 normal sinus rhythm
ECGs included in the analysis

331,422 ECGs (60%) included
in the training dataset

110,475 ECGs (20%) included
in the internal validation

dataset

110,475 ECGs (20%) included  
in the testing dataset

462,245 ECGs and 104,343 patients excluded
95,398 ECGs with unidentified PID or missing  

ECG leads
287,247 ECGs with no atrial fibrillation record or 

non-sinus rhythm
79,600 normal sinus rhythm ECGs recorded before 

the window of the interest (31 days)
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ture for analyzing standard 12-lead ECGs (sampled at 500 
Hz) included 50 convolutional layers, using the skip-connec-
tion method of the residual network [27] to ensure effec-
tive training. The model we used consisted of 16 residual 
blocks, each containing three convolution layers, followed 
by a Batch Normalization and rectified linear activation func-
tion (ReLU) applied after each layer [28,29]. Where the out-
put feature map dimensions decrease, a convolutional layer 
with a stride of 2 was applied to ensure alignment between 
input and output dimensions. Pooling was conducted at the 
first and last layers after the nonlinear activation function. A 
feature vector was then extracted from the ECG by applying 
two fully connected (FC) layers with ReLU activations. Final-
ly, this feature vector was concatenated with a 12-lead ECG 
feature vector, which produced class probabilities via a final 
FC layer and softmax function. The network weights were 
initialized following the He method, and the model was op-
timized using the Adam algorithm with default parameters 
β1 = 0.9 and β2 = 0.999 [30,31]. The batch size was 32, 
with a learning rate of 1 × 10-4, halved every 10 epochs. 
Figure 2 depicts the overall architect of our model.

Additionally, focal loss was used to address data imbal-
ance. This loss function—a variation of cross entropy—
counteracts extreme interclass imbalances by assigning 
lower weights to easily classified negatives to reduce their 
contribution to learning while increasing weights for chal-
lenging positives that are harder to classify [32]. Hyperpa-
rameters for the network structure and loss function used 
were set through grid search and manual tuning.

We trained 30 models using different dataset configura-
tions generated through pseudo-random number sampling. 
The model performance was evaluated using the area un-
der the curve (AUC) metric, a key performance indicator in 
binary classification where a higher AUC indicates better 
performance. To further evaluate the generalizability and 
stability of the model, we recorded the AUC of the devel-
oped models.

Identify contributors to PAF early detection 
through LRP
The interpretability of complex deep-learning models re-
mains a major concern in the medical field. Enhancing 
model transparency can improve acceptance in clinical de-
cision-making and justify specific diagnoses and treatment 
recommendations [33]. Layer-wise relevance propaga-
tion (LRP) is a prominent method for interpreting complex 
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Figure 2. Network architecture. Network architecture used in 
the study. Our network processes raw ECG data (sampled at 500 
Hz) and ECG features to predict AF onset within a month. ECG, 
electrocardiogram; ReLU, rectified linear activation function; PAF, 
paroxysmal atrial fibrillation; AF, atrial fibrillation.
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deep-learning models by measuring the contribution of 
each input to the output of the model [34]. It functions by 
estimating and decomposing the layer-level contributions 
presenting relevance scores for input features as a heatmap. 
We calculated the relevance score of each input value by 
backpropagating from the class score of the output node 

to the input layer, scaling values between 0 and 1 across all 
leads. This produced a scaled relevance score for each input 
dimension. To elucidate factors influencing early PAF diag-
nosis, we interpreted LRP from the following perspectives: 
leads and intervals. Lead contributions were identified by av-
eraging relevance scores for each lead across classifications. 
To maintain consistency and facilitate model interpretation, 
the ECG summary process was referenced and applied to 
relevance scores. Next, the ECG intervals were confirmed by 
summarizing key ECG measurements obtaining the average 
value of the relevance score for each interval.

Ethics statement
The Institutional Review Board of Chonnam National Uni-
versity Hospital approved this study with a waiver of consent 
(CNUH-2021-158), adhering to institutional patient privacy 
policies.

RESULTS

In the training, validation, and test datasets, age and sex dis-
tributions were similar between the PAF and normal groups. 
Table 1 presents the patient characteristics for PAF and nor-
mal groups across each dataset. Categorical variables are 
shown as absolute numbers or percentages, while contin-

Figure 3. Model performance. ROC curves of the trained model 
for all data (black), negative prediction ECG subset (blue), and 
positive prediction ECG subset (red). ECG, electrocardiogram; 
AUC, area under the curve; ROC, receiver operating characteristic.
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Table 2. Average of relevance scores for each ECG lead in the confusion matrix

Lead True negative True positive False negative False positive

I 0.3410 0.4319 0.4320 0.3765

II 0.3193 0.4228 0.4200 0.3488

III 0.3696 0.4470 0.4429 0.3994

aVR 0.5525 0.5042 0.5083 0.5123

aVL 0.3574 0.4397 0.4378 0.3950

aVF 0.2980 0.4134 0.4097 0.3313

V1 0.4287 0.4710 0.4693 0.4400

V2 0.3758 0.4518 0.4503 0.3979

V3 0.3624 0.4483 0.4453 0.3887

V4 0.3237 0.4262 0.4242 0.3468

V5 0.3332 0.4258 0.4264 0.3529

V6 0.3730 0.4398 0.4438 0.3906

ECG features 0.0000 0.0000 0.0000 0.0000

ECG, electrocardiogram.
Based on the classification results of the test dataset, the average relevance score for each lead was calculated, with scores ranging 
from 0 to 1; higher values indicate a greater influence on classification results.
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uous variables are reported as mean ± standard deviation. 
Categorical and continuous variables were compared using 
the chi-square test and Student’s t-test, respectively.

Model training involved 331,422 ECGs, with a mean pa-
tient age of 55.9 ±19.2 years at the date of the ECG re-
cording. Of these, 129,342 (51.8%) ECGs were from male 
patients, and 15,887 (4.8%) were labeled as PAF. The in-
ternal validation set included 110,475 ECGs, with a mean 
age of 55.9 ±19.2 years; 43,098 (51.9%) were male, and 
5,353 (4.8%) were PAF cases. The test dataset also includ-
ed 110,475 ECGs, with a mean age of 55.7 ±19.2 years; 
42,880 (51.6%) were male, and 5,301 (4.8%) were PAF 
cases. Cases lacking age (n = 64,587; 11.7%) and sex infor-
mation (n = 136,243; 24.7%) were treated as noise during 
model training.

Evaluation of model performance 
The limited number of positive cases required for effective 
training was a critical barrier when applying deep learning 
to diagnose PAF. To address this class imbalance, we em-
ployed focal loss as a loss function of CNN. This technique 
reduces the influence of easy negative cases while assigning 
greater weight to hard positive cases, thereby enhancing 
model accuracy. Here, we implemented a CNN model that 
inputs ECG data with features such as age, sex, and ECG 
parameters. Model performance was evaluated using the 
area under the curve of the receiver operating characteris-
tic curve (AUROC). To understand the generalizability and 
stability of the model, 30 datasets were generated through 
pseudo-random sampling and trained individually against 
the corresponding test dataset. The performance results 

Figure 4. Identification of major contributors to PAF diagnosis through model explainability with the LRP method. Overlay of summarized 
ECG signals for all true positive (black) and negative (blue) cases. The ECG signals for each lead are aligned and interpolated into one sig-
nal. The LRP projection map for true positives is highlighted in red, with the darker red regions indicating a stronger contribution to PAF 
diagnosis. LRP, layer-wise relevance propagation; ECG, electrocardiogram; PAF, paroxysmal atrial fibrillation.
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showed a sensitivity, specificity, and F1 score of 0.722 ± 
0.015, 0.906 ± 0.006, and 0.542 ± 0.011, respectively. The 
AUC for early PAF diagnosis was 0.905 ± 0.007. Class-spe-
cific predictive accuracy was 0.826 ± 0.011 for negative 
cases (Fig. 3, blue) and 0.702 ± 0.019 for the positive cases 
(Fig. 3, red).

Interpreting the inference process of the deep 
learning model
Although our model showed strong performance in diag-
nosing PAF using large-scale data, interpreting the inference 
process of the deep learning model remains challenging. 
We used the LRP method to explore the ECG leads and in-
tervals that affected PAF prediction. The P wave is clinical-
ly known to affect the diagnosis of PAF [18,21,35,36]. We 
hypothesized that critical factors could influence prediction 
more subtly, which could be revealed by analyzing ECG con-
tribution.

To explain the deep learning explanation technique 
on ECG records, we used the LRP method to identify key 
ECG leads and intervals. First, the average relevance scores 
of each ECG lead in the confusion matrix were calculated  
(Table 2). Regardless of prediction results, the aVR lead had 
the highest relevance score, indicating it as the most refer-
enced by the model in PAF diagnosis. In contrast, other ECG 
features showed low relevance scores, suggesting limited 
predictive effect. To identify the most significant interval for 
PAF diagnosis and minimize mutual cancellation of ECG sig-
nals, we constructed an averaged ECG by aligning, sorting, 
and interpolating each QRS complex based on the R-peaks. 
Figure 4 displays this summarized ECG along with LRP inten-
sities for the true positive cases. We summarized ECGs for 

true positives (Fig. 4, black) and negatives (Fig. 4, blue) for 
each lead. These summaries reveal a significant difference 
in the ST segment and T wave regions. In particular, the 
true positives showed T wave depression, suggesting that 
an inverted (or flattened) T wave may influence the PAF di-
agnosis. The T waves, indicating ventricular repolarization 
[37], are commonly classified as nonspecific ST-T abnormal-
ities (NSTTA) when flattened. To identify the most signifi-
cant ECG interval in PAF diagnosis, the average LRP weights 
across intervals were compared (Table 3). The ST segment 
and QRS complex emerged as the strongest predictors for 
PAF. We concluded that NSTTA could be a characteristic 
associated with PAF. Studies show that ST segment depres-
sion and T wave inversion are significant markers for cardio-
vascular disease, with T wave inversion linked to increased 
mortality risk [38,39]. Additionally, transient ST segment de-
pression has been observed during PAF episodes and linked 
to underlying coronary artery disease [40]. These findings 
indicate the association between NSTTA and PAF, which is 
consistent with our results, underscoring the significance of 
NSTTA and inverted T waves in predicting early PAF diagno-
sis, further emphasizing their clinical relevance in arrhythmia 
detection. However, the relationship between NSTTA and 
PAF has received limited attention, and our analysis confirms 
that a flattened T wave influences PAF diagnosis. This sug-
gests that T waves could serve as novel predictors for early 
PAF detection and that deep learning models can effectively 
reveal complex mechanisms in PAF diagnosis.

DISCUSSION

In this study, we demonstrate the development and anal-
ysis of an explainable deep learning algorithm applied to 
ECG data for early PAF detection. The model showed strong 
classification performance, even with relatively few positive 
cases, reflecting the prevalence of PAF in the general pop-
ulation. Across 30 different, nonoverlapping datasets, the 
model consistently performed well, with an AUC of 0.905 ± 
0.007. These findings suggest the potential for clinical tests 
to prescreen patients at risk of onset PAF during NSR. 

The explainability of deep learning closely relates to the 
reliability of the model output. Identifying potential patterns 
of AF is crucial, as many PAF cases are asymptomatic. We 
aim to uncover patterns of AF onset in ECGs primarily classi-
fied as NSR. Direct analysis is challenging due to the variabil-

Table 3. Relevance scores for each ECG interval

Interval Alert Index

PR interval 0.2078

PR segment 0.1909

QRS complex 0.3254

ST segment 0.3973

ST interval 0.3109

QT interval 0.3249

ECG, electrocardiogram.
The average relevance score according to major ECG intervals 
for true-positive cases, scaled to account for the influence of 
all leads.
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ity in individual ECG characteristics. Using the classification 
results of the AI model, the outputs were summarized based 
on the QRS complex, key contributors to model inference 
were identified for each major interval, and the ECGs were 
compared between the control and PAF groups. Our deep 
learning inference analysis revealed that the model refer-
enced the aVR lead most frequently in PAF diagnosis, with 
the ST segment exerting the greatest influence among ECG 
intervals. Additionally, ECG features such as age, sex, and PR 
interval contributed minimally, suggesting that ECG signals 
may interact nonlinearly in some cases of early PAF detec-
tion, which traditional methods cannot fully explain. These 
findings suggest that the proposed model predicts poten-
tial ventricular dysfunction, indicating structural changes 
that preidentify the disease before AF onset. We identified 
a previously undescribed and significant role of NSTTA in 
PAF diagnosis. However, further research into the role of 
NSTTA and T wave variations is essential to understand their 
clinical significance in diagnosing PAF. Additional studies are 
needed to examine how these ECG features might enhance 
diagnostic accuracy and improve AI model performance in 
predicting PAF.

Screening strategies under atypical conditions, such as 
PAF, face inherent limitations owing to false-positive or 
low-positive cases. To address this, we trained the model 
with higher weighting on positive cases. Consequently, the 
model demonstrated high negative predictive value, sup-
porting the feasibility of a low-cost screening test. We be-
lieve the described methods may benefit numerous clinical 
situations. For instance, the output of the model could serve 
as an alert index. Primary cardiologists can leverage early 
detection tools to proactively assess the safety of surgical 
procedures or pacing modalities. This study has some limita-
tions, including its single-center design, which requires val-
idation across diverse healthcare systems. Data imbalance 
may influence specificity and AUROC, and the absence of 
personalized information extraction hinders individualized 
analysis. Additionally, ECG summarization based on true 
positive and negative cases may reduce detail on specific 
ECG intervals. In conclusion, an AI model based on standard 
12-lead ECG data can predict future AF onset in NSR, with 
model inference rationale analyzed. Through external vali-
dation in more varied cohorts, our model can enhance PAF 
screening strategies and serve as a proactive clinical tool.

KEY MESSAGE
1.	 Developed a deep learning model to diagnose AF 

onset in potential patients exhibiting NSR.
2.	 Employed a deep learning explanation method to 

verify the decision basis of the model and investi-
gated ECG patterns influencing the results.

3.	 Indicating a potential association between NSTTA 
and PAF, highlighting the need for future validation 
across various systems.
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