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Sarcopenia is a condition characterized by a loss of muscle mass and function. In chronic kidney disease (CKD), where a 
chronic catabolic state exists, sarcopenia commonly occurs through various mechanisms, resulting in muscle wasting and 
decreased muscle endurance. Sarcopenic patients with CKD have high morbidity and mortality rates. Indeed, the preven-
tion and treatment of sarcopenia are mandatory. An imbalance between protein synthesis and degradation in muscle and 
increased oxidative stress and inflammation persist in CKD and induce muscle wasting. In addition, uremic toxins negatively 
affect muscle maintenance. A variety of potential therapeutic drugs targeting these muscle-wasting mechanisms in CKD 
have been investigated, but most of the trials focused on aged patients without CKD, and none of these drugs have been 
approved for the treatment of sarcopenia so far. Further studies on the molecular mechanisms of sarcopenia in CKD and tar-
gets for potential therapeutics are needed to improve the outcomes of sarcopenic patients with CKD.
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INTRODUCTION

Sarcopenia is a condition characterized by a loss of muscle 
mass and function (either muscle strength or physical per-
formance) and generally develops with age [1]. When first 
used, the term sarcopenia was used to describe an age-re-
lated loss of muscle mass only [2]. The definition of sarco-
penia has been updated and now includes muscle function. 
The most widely used definition of sarcopenia nowadays is 
proposed by the European Working Group on Sarcopenia 
in Older People (EWGSOP) 2. The EWGSOP2 considers low 
muscle mass as a key characteristic of sarcopenia, low mus-
cle quantity and quality to confirm the diagnosis and poor 
physical performance to indicate the severe sarcopenia [3]. 
The operational definition of sarcopenia proposed by EWG-
SOP2 is presented in Table 1. Sarcopenia is associated with 
poor health-related quality of life, including organ dysfunc-
tion [4,5] and is a significant risk factor for some cancers [6].

However, in addition to aging, several underlying condi-
tions, including malnutrition, low physical activity, specific 

drugs and diseases can also cause sarcopenia. In patients 
with chronic kidney disease (CKD), where a chronic cata-
bolic state exists, muscle wasting and decreased muscle 
endurance occur, and sarcopenia commonly occurs [2]. 
Compared to the aging-related sarcopenia where protein 
degradation is not changed, CKD-related sarcopenia is re-
lated to the increased muscle protein degradation and pro-
tein energy wasting (PEW), cachexia are usually present in 
patients with CKD [7,8]. The prevalence of sarcopenia using 
different definitions (mostly EWGSOP1 [9] and EWGSOP2 
[3] criteria) ranged from 5.9% [10] to 14% [11] in CKD 
patients without kidney replacement therapy, 13.7% [12] 
to 42.2% [13] in patients on hemodialysis (HD), and 4% 
[14] to 15.5% [15] in patients on peritoneal dialysis. Indeed, 
sarcopenic patients with CKD have significantly worse phys-
ical performance [11,16], a higher risk of disability [13], an 
increased risk of intradialytic hypotension during HD [17], 
increased mortality [10,18-21], and cardiovascular events 
[22,23]. Therefore, the diagnosis and interventions to treat 
sarcopenia in patients with CKD are important to improve 
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outcomes.
Risk factors for sarcopenia in patients with CKD include both 

modifiable factors (malnutrition [11,12,18,19,22,24-26]  
and low body mass index [16,19,27,28]) and non-modifi-
able factors (age [19,24,26,27,29], male sex [27,30], diabe-
tes mellitus [12,19,27,29], longer dialysis duration [28] and 
dialysis modality [29]). Because of the differences between 
the aging-related and CKD-related sarcopenia as described 
above, the treatment goals are also different. In patients 
with aging-related sarcopenia, restoring mobility and qual-
ity of life is the main goals. In patients with CKD-related 
sarcopenia where muscle wasting and PEW are more prom-
inent, recovering nutritional status to improve the response 
to the treatment of the CKD is more important [7]. Aerobic 
and resistance exercises show inconsistent positive effects 
on sarcopenia but still play a major role as interventions for 
the prevention and treatment of sarcopenia in patients with 
CKD [31-34]. Additionally, nutritional interventions [35-39], 
optimized dialysis, and correction of acidosis [40,41] are im-
portant strategies [42]. However, there is no consensus on 
the unified methods of both exercise and nutritional inter-
ventions, which limits the practical approach to sarcopenia 
in patients with CKD. Therefore, understanding the patho-
physiology and molecular mechanisms of sarcopenia in CKD 
and developing potential therapeutic agents are important. 
In this review, we aimed to address pharmacologic and 
nutritional interventions in which the targets were derived 
from the molecular mechanisms of sarcopenia in CKD.

BODY TEXT

Chronic catabolic conditions persist in CKD and induce an 
imbalance between protein synthesis and degradation, re-
sulting in muscle wasting [43,44]. Chronic inflammation 
and uremic toxin-induced muscle wasting are other import-
ant factors associated with sarcopenia in CKD. This review 
involves elucidating the mechanisms of sarcopenia associ-
ated with CKD in terms of protein synthesis and degrada-
tion of muscle, oxidative stress with inflammation, and the 
effect of uremic toxins, and describing the available drugs 
or nutritional supplements for each mechanism (Fig. 1). The 
ongoing clinical trials designed to investigate the drug’s ef-
fect on muscle were researched on October 2022 through 
ClinicalTrials.gov and are presented in Table 2. 

PROTEIN SYNTHESIS IN MUSCLE

Alterations in protein synthesis have been consistently ob-
served in animal models and some patients with CKD [45-50].  
Through the mammalian target of ramamycin (mTOR) and 
inactivation of the Forkhead box protein O (FoxO), the insu-
lin or insulin-like growth factor (IGF)-1-phosphatidylinositol 
3-kinase-Akt pathway increases protein synthesis in muscle 
[51-55]. Impaired insulin tolerance induces muscle atrophy 
[56] and IGF-1 treatment suppresses FoxO expression [57]. In 
addition, testosterone binds to the androgen receptor (AR) 
and regulates myogenic gene expression by stimulating Akt/

Table 1. Operational definition of sarcopenia proposed by the European Working Group on Sarcopenia in Older People 2 [3]

Cut-off points Diagnosis

Find cases SARC-F or clinical suspicion 

Assess Muscle strength
Grip strength: men < 27 kg, women < 16 kg, ch air stand > 15 seconds for five rises

Sarcopenia probablea

Confirm Muscle massb (quantity or quality)
Appendicular muscle mass: men < 20 kg, women < 15 kg
Appendicular muscle mass/height2: men < 7.0 kg/m2, women < 5.5 kg/m2

Sarcopenia confirmed

Severity Physical performance
Gait speed ≤ 0.8 m/s
Short physical performance battery ≤ 8 score, timed up and go test ≥ 20 seconds, 400 m walk: 

non-completion or ≥ 6 minutes for completion

Sarcopenia severe 

SARC-F, simple five-item questionnaire.
aConsider other reasons for low muscle strength (e.g., depression, stroke, balance disorders, peripheral vascular disorders).
bMeasured by dual-energy X-ray absorptiometry or bioelectrical impedance analysis or magnetic resonance imaging or computed 
tomography.
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mTOR complex 1 (mTORC1) and suppressing FoxO-targeted 
gene expression. As a result, it promotes protein synthesis 
and inhibits protein degradation [58,59]. Drugs relative to 
the mechanisms of protein synthesis include metformin, tes-
tosterone, selective androgen receptor modulators (SARM), 
and mTOR inhibitors. Also, the supplementation of the ami-
no acid is another treatment option to stimulate the muscle 
protein synthesis.

Metformin
Diabetic nephropathy is the leading cause of CKD in Korea 
and the United States [60-62]. Diabetes mellitus is a ma-
jor risk factor for sarcopenia in patients with both CKD and 
non-CKD [12,19,27,29,63] and interestingly, sarcopenia is 
an independent risk factor for diabetic nephropathy in type 
2 diabetes [64]. Hyperglycemia contributes to the loss of 
both muscle mass and function by increasing insulin resis-

tance, inflammatory cytokines, and accumulation of glyca-
tion end-products [65-67]. Several classes of anti-diabetic 
agents have shown a positive effect on improving energy 
metabolism in muscles in vivo [68-72] and this review is fo-
cused on the most extensively investigated drug, metformin. 
Metformin is a commonly prescribed drug for type 2 diabe-
tes, and by activating AMP-activated protein kinase (AMPK), 
it induces the expression of muscle hexokinase and glucose 
transporters, mimicking the effects of extensive exercise 
training [73]. In addition, metformin is known to increase 
the follicular fluid IGF-1 levels in patients with polycystic 
ovary syndrome [74] and this finding suggests the promo-
tion of protein synthesis in muscles by metformin. Howev-
er, metformin treatment did not increase muscle mass or 
longevity in either the sedentary or exercise mouse groups 
[75]. Metformin also blunted increases in mTORC1 signaling 
in response to progressive resistance exercise training and 

Figure 1. Molecular mechanisms of muscle wasting in chronic kidney disease and targeted drugs or supplements. CKD, chronic kidney 
disease; ROS, reactive oxygen species; RAAS, renin-angiotensin-aldosterone system; IL, interleukin; TNF, tumor necrosis factor; IGF, insu-
lin-like growth factor; SARM, selective androgen receptor modulator; IS, indoxyl sulfate; Rc, receptor; ActRIIB, activin receptor type IIB; 
OAT, organic anion transport; PI3K, phosphatidylinositol 3-kinase; FoxO, forkhead box protein O; mTOR, mammalian target of ramamycin; 
mTORi, mammalian target of ramamycin inhibitor; MuRF1, muscle RING-finger protein-1; AHR, aryl hydrocarbon receptor; NADPH, nico-
tinamide adenine dinucleotide phosphate.
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Table 2. The ongoing clinical trials investigating the effect of drugs and nutritional supplements on muscle

Molecular 
mechanism

Drug  
name

Drug  
target

Study identifier/
phase

Patients (number, 
age, conditions/ 

diseases)

Recruitment 
status

Start date to 
estimated  

completion date

Protein synthesis Metformin AMPK NCT02570672/II 120, 65–90 years Recruiting 2016 to 2024

Metformin AMPK NCT03107884/I 60, ≥ 60 years, 
muscle atrophy/
insulin resistance

Recruiting 2019 to 2023

Metformin AMPK NCT05532813/III 142, 18–70 years, 
Steiner’s disease/
myotonic dystrophy 
1

Not yet 2022 to 2025

Testosterone
Progressive muscle 

training

Testosterone NCT02873559/II/III 196, ≥ 70 years, male Recruiting 2016 to 2022

Testosterone
Long pulse width 

stimulation

Testosterone NCT03345576/II 24, 18–70 years, 
male/spinal cord 
injury 

Recruiting 2018 to 2023

Testosterone 
undecanoate

Testosterone NCT03721497/IV 50, 18–60 years, 
male/bariactric 
surgery candidate

Recruiting 2020 to 2024

Testosterone enanthate
Locomotor training

Testosterone NCT04460872/II 21, ≥ 18 years, male/
spinal cord injury

Recruiting 2021 to 2023

Testosterone
Cetrorelix acetate

Testosterone NCT04819204/NA 20, 18–35 years, male Not yet 2021 to 2023

Testosterone Testosterone NCT04301765/II 230, ≥ 55 years, male/
cancer 

Recruiting 2021 to 2025

Testosterone Testosterone NCT04049331/II 240, 18–54 years, 
male/prior cancer

Recruiting 2021 to 2026

Testosterone 
undecanoate

Testosterone NCT05249634/II 20, 18–85 years, 
male/CKD grade 
3b–4

Recruiting 2022 to 2023

Sirolimus
Unilateral resistance 

exercise

mTOR NCT05414292/NA 16, 50–90 years, male Recruiting 2021 to 2024

Rapamycin mTOR NCT05233722/NA 10, 22–35 years, male Recruiting 2022 to 2029

Leucine enriched EAA
BAA

Amino acid NCT03208868/NA 32, 18–70 years, liver 
cirrhosis

Recruiting 2013 to 2022

BAA Amino acid NCT04246918/NA 60, 18–60 years, liver 
cirrhosis

Recruiting 2020 to 2022

HMB
BAA

Amino acid NCT05166499/NA 24, 21–65 years, liver 
cirrhosis 

Recruiting 2021 to 2025

Oxidative stress Perindopril 
Losartan
Hydrochlorothiazide
Aerobic exercise 

ACE
Ang II

NCT03295734/II 213, ≥ 60 years Recruiting 2018 to 2023

Nicotinamide riboside Vitamin B NCT03818802/NA 48, 65–80 years Recruiting 2019 to 2022

Nicotinamide riboside Vitamin B NCT05590468/II 34, ≥ 18 years Not yet 2022 to 2025
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negatively impacted the hypertrophic responses to exercise 
in healthy older adults [76]. In line with these findings, a me-
ta-analysis showed that metformin did not affect exercise 
capacity [77]. Although the previous disappointing results of 
the studies, several clinical trials are recruiting the patients 
to investigate the effect of metformin on muscle mass and 
function (Table 2).

Testosterone and SARM
Testosterone plays an important role in the maintenance of 

muscle mass and function via the aforementioned molec-
ular mechanisms. More than 60% of men with CKD have 
testosterone deficiency and uremic hypogonadism [78-80]. 
In mice, testosterone improved skeletal muscle regenera-
tion and prevented muscle atrophy [81,82]. Several trials 
involving testosterone have consistently shown a positive 
effect of the drug in increasing muscle mass and function 
in older male patients [83-86]. However, various side effects 
of testosterone, including cardiovascular events, prostate 
hyperplasia, and lower urinary tract symptoms, occurred 

Molecular 
mechanism

Drug  
name

Drug  
target

Study identifier/
phase

Patients (number, 
age, conditions/ 

diseases)

Recruitment 
status

Start date to 
estimated  

completion date

Cholecalciferol Vitamin D NCT04262934/III 150, ≥ 18 years, CKD 
grade 5 on HD

Recruiting 2018 to 2024

Vitamin D3 Vitamin D NCT05174611/II 60, 18–40 years Recruiting 2021 to 2023

Vitamin D
Neuromuscular 

electrical stimulation

Vitamin D NCT05008484/II/III 20, 18–65 years, 
spinal cord injury 

Recruiting 2021 to 2023

Vitamin D
Omega-3

Vitamin D NCT05331807/I 88, 19–64 years, 
female/breast 
cancer

Recruiting 2022 to 2022

Ergocalciferol Vitamin D NCT05434377/NA 80, ≥ 18 years, 
CKD grade 5 on 
maintenance dialysis 
(HD or PD)

Not yet 2022 to 2023

Vitamin K2
Micro-crystalline 

cellulose

Vitamin K NCT04676958/NA 80, ≥ 18 years Recruiting 2021 to 2022

Vitamin K2 Vitamin K NCT05161975/NA 60, 18–60 years, 
ankle injury

Not yet 2021 to 2023

Resveratrol Resveratrol NCT03525379/II 13, 50–75 years, 
male/chronic heart 
failure

Not yet 2017 to 2022

Resveratrol
Nicotinamide riboside

Resveratrol NCT03743636/III 90, ≥ 18 years, 
peripheral artery 
disease

Recruiting 2018 to 2023

Ghrelin Ghrelin NCT04377126/II 30, ≥ 55 years, 
peripheral artery 
disease

Recruiting 2020 to 2023

Anamorelin 
hydrochloride

Ghrelin NCT04021706/I 32, ≥ 50 years, 
sarcopenia/
osteopenia

Not yet 2019 to 2023

AMPK, AMP-activated protein kinase; NA, not applicable; CKD, chronic kidney disease; mTOR, mammalian target of ramamycin; 
EAA, essential amino acid; BAA, balanced amino acid; HMB, β-hydroxy-β-methylbutyrate; ACE, angiotensin-converting enzyme; 
Ang II, angiotensin II; HD, hemodialysis; PD, peritoneal dialysis.

Table 2. Continued
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during the trials [83,87]. Clinical trials using testosterone 
undecanoate, which showed no risk of prostate cancer or 
cardiovascular disease [88] are recruiting patients and one 
trial (NCT05249634) is recruiting the patients with CKD (Ta-
ble 2). SARMs function as anoints/antagonists of AR, and 
by their selective action, SARM therapy has fewer off-target 
side effects [89]. Several SARMs, such as MK-0773, GTx-
024, and GSK2881078, increased lean body mass in healthy 
older individuals, but MK-0773 and GTx-024 failed to im-
prove physical performance [90-93].

mTOR inhibitor
mTORC1 promotes protein synthesis by phosphorylating 
two key effectors, p70S6 kinase 1 and eIF4E binding protein 
[94]. Acute activation of mTORC1 signaling in vivo promotes 
muscle hypertrophy [95], but in the chronic state, both inhi-
bition and hyperactivation of mTORC1 result in muscle at-
rophy. Long-term inhibition of mTOR by rapamycin induced 
insulin resistance of muscle in rats [96]. In a retrospective 
study in which the patients received mTOR inhibitors for at 
least 6 months, the drugs significantly decreased the skele-
tal muscle area and lean body mass [97]. Moreover, mTOR 
hyperactivation has been observed in both aged rodent and 
human muscles [98]. In a mouse model of muscle dystro-
phy, hyperactive mTORC1 signaling was observed, and the 
mTORC1 inhibitor rapamycin improved skeletal muscle func-
tion [99]. Although evidence of hyperactivation of mTORC1 
in muscles is scarce in CKD, acute and chronic kidney injury 
constitutively activates mTOR signaling in kidney fibroblasts, 
leading to kidney damage [100]. Therefore, mTOR inhibitors 
are potential drugs for the treatment of sarcopenia in CKD. 
Based on these findings, two clinical trials investigating the 
impact of mTOR inhibition on muscle are currently recruiting 
patients (Table 2).

Amino acids 
Amino acids are classified to the essential amino acid (EAA) 
and non-EAA. Among the EAAs, the branched-chain amino 
acids (BCAA) [101,102] and leucine [103-105] are known to 
induce stimulation of muscle protein synthesis. In CKD, var-
ious combined conditions (inflammation, catabolic illness-
es [106], acidosis [43,107,108], nutritional loss to dialysate 
[109-111], endocrine disorders such as resistance to insulin 
[112], growth hormone [113], and IGF-1 [114], hyperpara-
thyroidism [115]) can lead to PEW where body stores of pro-
tein and energy fuels are decreased [116]. Therefore, the 

plasma and cellular levels of the BCAA and leucine are com-
monly low in CKD [115]. Since protein restriction is essen-
tial to minimize uremic toxicity and delay progression of the 
kidney disease, BCAA and leucine supplements are effective 
to improve the sarcopenia while reducing the total amount 
of the protein intake in CKD patients [117]. Both in rat and 
elderly patients, administration of BCAA and leucine are ef-
fective to improve muscle protein synthesis [118-121]. In HD 
patients with malnutrition, the EAA supplements improved 
appetite, increased plasma albumin levels and enhanced 
muscle strength [36,37,122]. However, β-hydroxy-β-meth-
ylbutyrate, a metabolite of leucine showed no benefit on 
body composition in HD patients [123]. Currently, several 
clinical trials are recruiting patients with chronic liver disease 
to investigate the effect of amino acid supplementation on 
sarcopenia (Table 2).

PROTEIN DEGRADATION IN MUSCLE

In CKD, protein degradation increases via increased expres-
sion of atrophy-inducing genes (atrogen) and atrophy-relat-
ed biomarkers [51,124-127]. Myostatin (growth differentia-
tion factor 8) is an autocrine inhibitor of muscle growth and 
is mainly produced in skeletal muscles [128,129]. It binds to 
activin type 2 receptors on the muscle fiber membrane and 
subsequently recruits and activates activin type 1 receptor B 
and transforming growth factor β to phosphorylate Smad 
2/3 [130]. In addition, it reduces Akt signaling, regulates 
the Akt/mTOR pathways, and suppresses the FoxO pathway 
[131]. Through this pathway, myostatin promotes protein 
degradation in the muscle and functions as a negative reg-
ulator of muscle mass [132]. The myostatin maturation pro-
cess and extracellular binding proteins, such as follistatin, 
also regulate the myostatin pathway, and follistatin func-
tions as a myostatin antagonist [133]. Myostatin increases 
in patients with CKD, and several factors, including low 
physical activity, oxidative stress and inflammation, uremic 
toxins, angiotensin II (Ang II), metabolic acidosis, and gluco-
corticoids, maybe the contributors [51,134-136]. Drugs that 
target the myostatin pathway include myostatin inhibitors, 
activin receptor antagonists, and follistatin-based drugs. 
Most trials investigating the effects of drugs on sarcopenia 
have recruited patients without CKD.
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Myostatin inhibitor
The upregulation of muscle myostatin was observed both in 
a CKD rodent model and in patients with CKD [135,137]. 
In CKD mice, an anti-myostatin peptibody suppressed cir-
culating inflammatory cytokines and reversed the loss of 
body weight and muscle mass [135]. Landogrozumab (LY-
2495655), a humanized monoclonal antibody for myosta-
tin, increased lean mass and showed a tendency to improve 
functional measures of muscle power in older patients [138]. 
Another monoclonal anti-myostatin antibody, trevogrumab 
(REGN-1033), showed a tendency toward increased mus-
cle size in only a few patients with muscular dystrophy and 
demonstrated good safety and tolerability [139].

Activin receptor antagonist
In a mouse model, bimagrumab, a specific monoclonal an-
tibody that binds to the activin type 2A/2B receptor, signifi-
cantly promoted skeletal muscle hypertrophy [140,141]. A 
phase II clinical trial with bimagrumab showed the effect of 
the drug on increasing thigh muscle mass and grip strength 
and improving mobility in patients with sarcopenia [142]. A 
subsequent phase II/III trial was completed in 2018, and data 
analysis is ongoing [143]. In patients with type 2 diabetes 
and obesity, bimagrumab resulted in the loss of fat mass, 
gain of lean mass, and metabolic improvements [144]. Ra-
matercept, a soluble form of the activin type 2 receptor, 
significantly increased the cross-sectional area of type I and 
II muscle fibers in a mouse model [145], but in its phase II 
trial, serious non-muscle-related adverse events of the drug 
were observed, and the trial was terminated [146].

Follistatin fusion protein and gene therapy
Intramuscular injection of FST288-Fc, a follistatin fusion 
protein, induced the growth of targeted muscles [147] 
and systemic administration of monovalent follistatin-like 
3-Fc-fusion protein induced muscle fiber hypertrophy and 
increased muscle mass in a mouse model [148]. Another fol-
listatin-based fusion protein, ACE-083, also induced local-
ized skeletal muscle hypertrophy and increased focal force 
generation in a mouse model [149]. However, in a phase II 
trial of ACE-083, treatment increased muscle mass but did 
not improve functional outcomes [150]. Associated virus 
(AAV) serotype 1. Follistatin, which acts as a natural myo-
statin antagonist, significantly increases muscle mass and 
strength in a mouse model of muscular dystrophy [151]. 
FS344, an isoform of follistatin by AAV 1, improved ambula-

tion in patients with Becker muscular dystrophy or sporadic 
inclusion body myositis [152-154].

OXIDATIVE STRESS AND INFLAMMATION

Oxidative stress and inflammation are features of CKD [155] 
and they also induce muscle wasting. Through the nuclear 
factor kappa-light-chain-enhancer of activated B cells path-
way, reactive oxygen species (ROS)-induced tumor necrosis 
factor (TNF)-α activates myostatin expression [137] and in-
creased inflammatory cytokines, such as TNF-α and inter-
leukin (IL)-6, causing muscle atrophy in patients with CKD 
[156-158]. Owing to their antioxidant effects, angioten-
sin-converting enzyme (ACE) inhibitor, Ang II type I receptor 
blocker (ARB), vitamins, resveratrol, and its anti-inflammato-
ry effect, ghrelin are potential therapeutic drugs and supple-
ments for sarcopenia in CKD.

Renin-angiotensin-aldosterone system (RAAS)
The RAAS plays a role in systemic physiology and is respon-
sible for blood pressure control, maintenance of fluid ho-
meostasis, and electrolyte balance [159]. Along with the 
major contributions of RAAS to these mechanisms, aber-
rant signaling through RAAS in CKD also influences muscle 
wasting [160]. The protease renin cleaves angiotensinogen 
and forms angiotensin I (Ang I), and ACE cleaves Ang I to 
produce Ang II. The three most investigated membrane re-
ceptors for RAAS hormone peptides are the Ang II type 1 re-
ceptor (AT1R), Ang II type 2 receptor, and the mitochondrial 
assembly receptor (MASR). These receptors are expressed 
in various tissues, including smooth muscle and skeletal 
muscle fibers [161,162]. When Ang II binds to AT1R on 
the cell membrane, the classical RAAS signaling pathways 
are activated. By transducing the signals to downstream 
secondary messengers, AT1R signaling produces ROS and 
contributes to muscle wasting [160]. Angiotensin-(1-7), the 
principal hormone in the non-classical RAAS pathway, acti-
vates MASR and inhibits AT1R activation [163]. Therefore, 
disrupting the classical RAAS pathway through inhibition of 
ACE or blocking of AT1R and promoting MASR are poten-
tial therapeutic targets to reduce muscle wasting.

ACE inhibitors and ARB are the most commonly pre-
scribed antihypertensive drugs in patients with CKD because 
of their effect on slowing the decline in kidney function, 
decreasing urine protein excretion, and adverse cardiovas-
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cular outcomes [164-167]. Along with renoprotective ef-
fects, these drugs are expected to inhibit muscle atrophy by 
blocking Ang II production. Treatment of hypertension with 
ACE inhibitors showed a slower decline in muscle strength 
and mobility [168] and higher muscle mass of the lower 
limb than with other antihypertensive drugs [169]. It also 
increased the IGF-1 levels in older patients [170]. However, 
in a recently published randomized controlled trial to deter-
mine the efficacy of leucine and/or perindopril in improving 
physical performance or muscle mass in older patients with 
sarcopenia, neither leucine nor perindopril showed this ef-
fect [171]. In the case of ARB, losartan improved muscle re-
modeling, protected against disuse atrophy [172], improved 
mobility, and reduced inflammation and oxidative stress in 
sarcopenic mice [173]. However, losartan showed no effect 
in preventing mobility loss in older adults [174]. In addi-
tion, there was no significant effect in preventing muscle 
strength loss in pre-frail older patients with losartan treat-
ment (NCT01989793, completed in 2016). One clinical trial 
(NCT03295734) is recruiting older patients to investigate 
the effect of perindopril on muscle function compared to 
losartan or hydrochlorothiazide while all patients will partic-
ipate in a structured aerobic exercise intervention (Table 2).

MASR agonists attenuate muscle atrophy by activating 
MASR and inhibiting the downstream signaling of the AT1 
receptor. AVE 0991, an MASR agonist, showed multiple 
attenuated muscles wasting in mice with cancer cachexia 
[175]. A phase II trial investigating the safety and tolera-
bility of the MASR agonist BIO101 measured gait speed, 
several body mass indicators, and power in older patients 
(NCT03452488). The study was completed but no signifi-
cant results were reported.

Vitamins and resveratrol
Vitamin B is a cofactor with methyl donors regulating the 
level of homocysteine. Uremia-induced hyperhomocyste-
inemia occurs in patients with CKD and is associated with 
poorer outcomes [176-178]. Several studies demonstrated 
that high homocysteine levels are also linked to impaired 
muscle strength [179,180] and physical performance 
[181,182] in older patients. A 2-year randomized controlled 
trial of vitamin B12 and folic acid supplementation showed 
a positive effect on gait speed, but not on muscle strength 
[183]. Two clinical trials investigating the vitamin B3 are on-
going (Table 2). Vitamin C is a potential water-soluble an-
tioxidant, and its effects have been demonstrated in many 

in vitro experiments [184-188]. Plasma vitamin C concen-
tration declines with kidney function [189] and additional 
loss of this component into the dialysate occurs in patients 
on HD [190]. Higher vitamin C intake was associated with 
higher skeletal muscle mass and power in free-living wom-
en [185]. Therefore, clinical trials investigating the effect of 
vitamin C supplementation on muscle in patients with CKD 
seem promising though not conducted yet.

Because vitamin D has a structure homologous to choles-
terol, it may be regarded as an antioxidant, and this effect 
has been suggested to have a non-calcemic role [158]. Vita-
min D deficiency in CKD is common and is associated with 
low bone formation rate, bone mineral density, and muscle 
atrophy [191]. In a mouse model, vitamin D3 reduced the 
extent of lipid peroxidation and induced superoxide dis-
mutase activity; these effects were similar to those of vita-
min E [158]. In older patients, vitamin D supplementation 
increased muscle mass and strength [192,193]. The effect 
of vitamin D was enhanced in older patients with vitamin D 
deficiency [194]. Several clinical trials are actively recruiting 
patients to investigate the effect of vitamin D on muscle and 
two trials are recruiting the patients on maintenance dialysis 
(Table 2). Vitamin K acts as a cofactor of γ-carboxylation 
of some proteins [195,196] and one of the γ-carboxylat-
ed proteins, AR has an important role in protein synthesis 
of the muscle as described above [197]. CKD patients have 
subclinical vitamin K deficiency [198,199]. Several clinical 
studies demonstrated that high vitamin K was associated 
with better physical performance, suggesting the beneficial 
effect of vitamin K in muscle quality [200-203]. To investi-
gate the benefit of vitamin K supplementation on muscle, 
two clinical studies are designed and one study is currently 
recruiting the patients (Table 2).

Resveratrol is a natural phenolic compound found in many 
foods, such as grapes, blueberries, and peanuts. Resveratrol 
has been shown to have antioxidant and anti-inflammatory 
properties [204,205]. Resveratrol improved skeletal muscle 
mass and function and prevented sarcopenia in a rat model 
[206-208]. In addition, resveratrol improved exercise perfor-
mance and physical endurance in a mouse model [209,210]. 
However, in a trial of humans, resveratrol impaired exercise 
training-induced improvements by reducing oxidative stress 
and inflammation markers in skeletal muscles [211]. Two 
clinical trials evaluating the clinical efficacy of resveratrol in 
improving skeletal muscle in patients with chronic heart fail-
ure or peripheral artery disease are being conducted (Table 2).
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Ghrelin
Ghrelin is an acylated peptide that stimulates growth hor-
mones and subsequently stimulates feeding [212]. In addi-
tion to its effects on appetite regulation, ghrelin has been 
shown to exert anti-inflammatory effects. There are major 
forms of circulating ghrelin, acylated and des-acyl ghrelin. 
Acylated ghrelin increases food intake and des-acyl ghrelin 
induces negative energy balance [213,214] The levels of 
des-acyl were elevated in CKD patients [215]. Ghrelin and 
a synthetic ghrelin receptor agonist significantly decreased 
the expression of IL-1 receptor-I transcript in the brain and 
thus improved lean body mass retention in a rat model of 
cancer cachexia [216]. In CKD rats, treatment with ghrelin 
and two ghrelin receptor agonists (BIM-28125 and BIM-
28131) resulted in decreased muscle protein degradation 
and circulatory inflammatory cytokines, thus increasing food 
intake and improving lean body mass [217]. Ghrelin and the 
ghrelin agonist anamorelin have been shown to increase 
food intake and muscle mass in cancer patients [218-221]. 
One clinical trial investigating the effect of ghrelin is recruit-
ing patients with peripheral artery disease (NCT04377126). 
Capromorelin, a ghrelin receptor agonist, increased lean 
mass and physical performance in sarcopenic elderly pa-
tients [222]. A phase II trial designed to determine the ef-
fect of MK-0677, a growth hormone secretagogue, on lean 
body mass in CKD stage 4/5 patients was withdrawn be-
cause the investigators could not obtain drug supply from 
the manufacturer (NCT01343641).

UREMIC TOXINS

Uremic toxins increase in serum along with a decline in 
kidney function, and the negative effect of accumulated 
uremic toxins on muscle wasting is a specific mechanism of 
CKD [223]. Protein-bound uremic toxins, including p-Cresyl 
sulfate and indoxyl sulfate (IS), have been investigated for 
their effects on muscle wasting. These toxins are taken up 
by cells through an organic anion transporter [224,225]. In 
mice, p-Cresyl sulfate alters the insulin signaling pathway 
by suppressing insulin-induced phosphorylation of Akt, re-
sulting in insulin resistance [226]. IS induces metabolic al-
terations via nuclear factor (erythroid-2-related factor)-2 in 
skeletal muscle [227]. IS also enhances the production of 
muscle atrophy-related genes like myostatin and atrogin-1 
and increases ROS and inflammatory cytokines [228,229]. 

In addition, it acts as an aryl hydrocarbon receptor (AHR) 
ligand, and AHR works as a component of the ubiquitin li-
gase complex [230,231]. Through these mechanisms, IS in-
duces skeletal muscle wasting and is a potential therapeutic 
drug target [229,232]. AST-120, an absorbent capsule used 
to remove circulating IS, significantly reversed the negative 
changes in the skeletal muscle by reducing circulating IS in 
CKD mice [232]. In a phase IV trial, AST-120 showed mod-
est benefits in gait speed change and quality of life, but the 
changes were not significant in patients with CKD [233].

CONCLUSIONS

This review elucidated the brief molecular mechanisms of 
sarcopenia associated with CKD and the potential therapeu-
tic drugs and nutritional supplements for sarcopenia catego-
rized by each mechanism. Various mechanisms, including an 
imbalance in protein synthesis and degradation, increased 
oxidative stress and inflammation, and uremic toxins, con-
tribute to muscle wasting and result in sarcopenia in CKD. 
Some potential therapeutic drugs have been investigated, 
and promising drugs are under ongoing clinical trials. Fur-
ther clinical trials testing the effects of drugs in patients with 
CKD and more studies unveiling the potential molecular 
treatment targets for sarcopenia are needed to improve the 
outcomes of sarcopenic patients with CKD.
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