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Multidrug resistance in bacteria is an important issue and is increasing in frequency 
worldwide because of the limitations of therapeutic agents. From 2010 to 2019, 14 new 
systemic antibiotics received regulatory approval in the United States. However, few new 
antibiotics have been introduced in Republic of Korea to combat multidrug-resistant 
pathogens. Here, we introduce six novel antibiotics for Gram-positive bacteria and five 
for Gram-negative bacteria approved by the United States Food and Drug Administration 
and the European Medicines Agency from 2009 to October 2021, and recommend that 
they be approved for use in Republic of Korea at the earliest possible date.
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INTRODUCTION

Multidrug-resistant (MDR) bacteria is a critical problem that 
is on the increase worldwide because of limitations in avail-
able therapeutic agents [1-3]. Consequently, the develop-
ment of new antibiotics is a matter of urgency. From 2010 
to 2019, 14 new systemic antibiotics received regulatory ap-
proval in the United States [4,5]. In Republic of Korea, MDR 
bacteria are prevalent not only in nosocomial infections but 
also in community-acquired infections [6-11]. The Korea 
Disease Control and Prevention Agency designated vanco-
mycin-resistant Staphylococcus aureus (VRSA) and carbape-
nem-resistant Enterobacterales (CRE) as group 2 nationally 
notifiable infectious diseases, and methicillin-resistant S. au-
reus (MRSA), vancomycin-resistant Enterococcus (VRE), mul-

tidrug-resistant Pseudomonas aeruginosa (MRPA), and mul-
tidrug-resistant Acinetobacter baumannii (MRAB) as group 
4 nationally notifiable infectious diseases [12]. According to 
the Korean global antimicrobial resistance surveillance sys-
tem, 53.2% of S. aureus blood strains in Republic of Ko-
rea were MRSA and 34% of Enterococcus faecium strains 
were VRE in 2017 [13]. In 2015, 85% of A. baumannii and 
35% of P. aeruginosa were resistant to imipenem [12]. The 
prevalence of CRE infections has rapidly increased [14]. In 
Republic of Korea, the challenges associated with obtaining 
approval for new drugs complicates treatment of infections 
caused by MDR bacteria. These challenges include the high 
cost of new antibiotics, making them unaffordable for the 
domestic health insurance system. Antibiotics introduced in 
Republic of Korea over the past decade include tigecycline 

mailto:symonlee@catholic.ac.kr
http://crossmark.crossref.org/dialog/?doi=10.3904/kjim.2021.527&domain=pdf&date_stamp=2022-03-01


272 www.kjim.org

The Korean Journal of Internal Medicine Vol. 37, No. 2, March 2022

https://doi.org/10.3904/kjim.2021.527

(2007), doripenem (2010), zabofloxacin (2015), and dap-
tomycin (2021), which have been approved of the Ministry 
of Food and Drug Safety (MFDS). Tedizolid (2015) was ap-
proved but not sold in Republic of Korea, and ceftolozane/
tazobactam (2017) was approved by the MFDS as non-reim-
bursable [15]. Here we introduce novel antibiotics for MDR 
bacteria that have received regulatory approval by both the 
U.S. Food and Drug Administration (FDA) and the European 
Medicines Agency (EMA) from 2009 to October 2021. We 
recommend that these antibiotics be adopted in Republic 
of Korea. The scope of the review did not encompass new 
drugs targeting tuberculosis, Clostridioides difficile, fungi, or 
viruses.

AGENTS TARGETING GRAM-POSITIVE BAC-
TERIA

Table 1 lists novel antibiotics active against Gram-positive 
bacteria that were approved by the FDA and EMA from 
2009 to October 2021.

Telavancin
Telavancin, oritavancin, and dalbavancin are next-genera-
tion lipoglycopeptide antibiotics. They are vancomycin de-
rivatives that contain both lipophilic and hydrophobic side 
chains. This structural modification enhances their antibac-
terial activity compared to vancomycin [16].

Telavancin is effective for the treatment of Gram-positive 
bacterial infections, especially MRSA [17]. Although vanco-
mycin and telavancin have similar activities, telavancin has a 
longer half-life and need be administered only once a day,  
and it has better tissue permeability than vancomycin [18]. 
In a clinical study of complicated skin and skin structure in-
fections, telavancin was comparably effective to standard of 
care, such as vancomycin [19,20]. The rate of microbiolog-
ical eradication in patients with MRSA infections was 84% 
in the telavancin group and 74% in the standard of care 
group. Telavancin exhibited noninferiority to vancomycin in 
two phase 3 clinical trials involving patients with nosocomial 
pneumonia caused by Gram-positive bacteria [21]. How-
ever, when telavancin was used in patients with impaired 
renal function (creatinine clearance rate ≤ 50 mL/min), the 
mortality rate was higher than that of vancomycin. There-
fore, clinicians should consider using telavancin instead of 
vancomycin for the treatment of MRSA in cases with a high 

minimum inhibitory concentration of vancomycin. The risks 
and benefits to patients should be weighed when making 
treatment decisions.

Enterococci harboring the vanA gene can be resistant to 
telavancin; however, enterococci with the vanB gene are 
susceptible. Therefore, telavancin can be used to treat in-
fections caused by VRE strains that have the vanB gene [17].

Oritavancin
Oritavancin is a novel lipoglycopeptide antibiotic active 
against MRSA, VRSA, and VRE [16]. Oritavancin has good 
antimicrobial activity against VRE. The minimum inhibitory 
concentration of oritavancin for 90% of strains was 0.12 
µg/mL for VRE that harbor vanA, and ≤ 0.008 µg/mL for VRE 
that harbor the vanB gene [16].

Oritavancin was approved by the FDA for the treatment 
of acute bacterial skin and skin structure infections (ABSS-
SIs). Oritavancin has a long half-life (393 hours), and a single 
dose of 1,200 mg is recommended for ABSSSIs. A random-
ized trial of oritavancin revealed its noninferiority to vanco-
mycin for the treatment of ABSSSIs [22]. The investigator-as-
sessed clinical cure rate was 79.6% in the oritavancin group 
and 80.0% in the vancomycin group.

Dalbavancin
Dalbavancin was developed as an alternative to vancomy-
cin; its higher antimicrobial activity and prolonged half-life 
compared with vancomycin enable administration of  dalba-
vancin as a single dose treatment regimen for ABSSSIs [23]. 
A randomized clinical trial demonstrated its noninferiority to 
vancomycin followed by oral linezolid for ABSSSIs (response 
rate, 79.7% vs. 79.8%; 95% confidence interval [CI] of the 
weighted difference, −4.5 to 4.2) [24]. Additionally, dal-
bavancin was approved by the FDA for the treatment for 
ABSSSIs in pediatric patients from birth [25]. Dalbavancin 
reportedly exhibits satisfactory activity against MRSA and 
even biofilms of S. aureus. It also has activity against VRE 
with the vanB gene but not strains with the vanA gene [26].

Ceftaroline
As for other β-lactams, ceftaroline binds to penicillin-bind-
ing proteins to inhibit cell-wall synthesis. Ceftaroline exhibits 
a high affinity for penicillin-binding protein 2a, which is re-
lated to methicillin resistance [27]. Ceftaroline can be used 
for the treatment of infections caused by MRSA, vancomy-
cin intermediate-resistant S. aureus (VISA), and VRSA. It has 
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in vitro activity against vancomycin-resistant Enterococcus 
faecalis but not against E. faecium. In addition, ceftaroline 
has activity against clinically relevant Gram-negative bacte-
ria, including Haemophilus influenzae, Moraxella catarrha-
lis, non-extended-spectrum β-lactamase (ESBL)-producing 
Escherichia coli, and Klebsiella pneumoniae but not against 

P. aeruginosa or Acinetobacter species or β-lactamase-pro-
ducing, AmpC-derepressed Enterobacterales [27,28].

In phase 3 studies, the clinical cure rate of ceftaroline was 
noninferior to that of vancomycin plus aztreonam (91.6%–
92.2% vs. 92.1%–92.7%) for ABSSSIs [29-32]. Phase 3 
trials involving patients with community-acquired bacterial 

Table 1. Characteristics of new Gram-positive antibacterial drugs that received regulatory approval by the FDA and EMA 

from 2009 to October 2021

Name Class
Approval 

status (year 
approved)

Cost (2021 
US$)a

Indications
Dose and 

dosing interval

Activity 
against 
MRSA

Activity 
against 

VISA/VRSA

Activity against 
VRE

Telavancin Glycopeptide FDA (2009), 
EMA (2009)

587.26  
(per 750 mg)

cSSSI 
HABP/
VABP 

10 mg/kg by IV 
infusion over 
60 min every 
24 hr

Active Active only 
against 
VISA

Active against 
VRE with the 
vanB gene 

Oritavancin Glycopeptide FDA (2014), 
EMA (2015) 

1,073.96  
(per 400 mg)

ABSSSIs 1,200 mg by IV 
infusion over 3 
hr as a single 
dose

Active Active Active

Dalbavancin Glycopeptide FDA (2014), 
EMA (2015)

1,709.30  
(per 500 mg)	

ABSSSIs 1,500 mg by IV 
infusion over 
30 min as a 
single dose

Active Active Active against 
VRE with the 
vanB gene

Ceftaroline Cephalosporin FDA (2010), 
EMA (2010)

222.08  
(per 600 mg)

ABSSSIs 
CABP

600 mg every 
12 hr by 
IV infusion 
administered 
over 60 min

Active Active Active against 
VR Enterococ-
cus faecalis

Lefamulin Pleuromutilin FDA (2019), 
EMA (2020)

IV solution: 
7.24  
(per 150 mg)

Oral tablet: 
144.50  
(per 600 mg)

CABP 150 mg every 
12 hr by IV 
infusion over 
60 min or 
600 mg orally 
every 12 hr

Active Active Active against 
VR Enterococ-
cus faecium 

Delafloxacin Fluroquinolone FDA (2017), 
EMA (2019)

IV solution: 
144.81  
(per 300 mg)

Oral tablet: 
74.47–81.28	
 (per 450 mg)

ABSSSIs 300 mg by IV
infusion over 
60 min every 
12 hr, or 450 
mg orally 
every 12 hr

Active Various Active against 
VR Enterococ-
cus faecalis

FDA, U.S. Food and Drug Administration; EMA, European Medicines Agency; MRSA, methicillin-resistant Staphylococcus aureus; 
VISA, vancomycin intermediate-resistant Staphylococcus aureus; VRSA, vancomycin-resistant Staphylococcus aureus; VRE, vanco-
mycin-resistant Enterococcus; cSSSI, complicated skin and skin structure infection; HABP, hospital-acquired bacterial pneumonia; 
VABP, ventilator-associated bacterial pneumonia; IV, intravenous; ABSSSI, acute bacterial skin and skin structure infection; CABP, 
community-acquired bacterial pneumonia; VR, vancomycin-resistant.
aReferenced in the price guide on Drugs.com.
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pneumonia (CABP) indicated that ceftaroline was noninfe-
rior to ceftriaxone [33]. The clinical cure rate for ceftaroline 
and ceftriaxone was 84.3% and 77.7%, respectively.

Lefamulin
Lefamulin was the first systemic pleuromutilin antibiot-
ic agent approved by the FDA and EMA, and is avail-
able as oral and intravenous (IV) formulations [34]. It has 
broad-spectrum activity against Gram-positive, Gram-neg-
ative, and anaerobic pathogens, as well as atypical bacteria 
[35]. Lefamulin has bactericidal activity against MRSA and 
vancomycin-resistant E. faecium but not E. faecalis [35,36]. 
H. influenzae and M. catarrhalis are reportedly susceptible, 
and lefamulin has limited activity against P. aeruginosa, A. 
baumannii, and Enterobacterales [34,35].

For the treatment of CABP, lefamulin (oral and IV formu-
lations) was noninferior to moxifloxacin and well tolerated 
[37,38]. Additionally, a phase 2 trial demonstrated the effi-
cacy of lefamulin against ABSSSIs [39].

Delafloxacin
Delafloxacin is a fluoroquinolone with increased activity 
in acidic environments, such as those encountered with 
ABSSSIs. It is active against most Gram-positive pathogens, 
including MRSA and E. faecalis [40]. When used to treat 
MRSA biofilm-mediated infections, delafloxacin was more 
potent than daptomycin [41]. However, delafloxacin was 
active against only 4.6% of E. faecium strains [42]. In ad-
dition, 40% of VISA isolates were susceptible to delaflox-
acin; however, only 7% of VRSA isolates were susceptible 
[43]. Regarding Gram-negative bacteria, most fluoroquino-
lone-resistant Enterobacterales in one study had lower sus-
ceptibility to delafloxacin than susceptible Enterobacterales 
[44]. Only 54% of P. aeruginosa isolates were susceptible to 
delafloxacin [42].

Delafloxacin is reportedly noninferior to vancomycin plus 
aztreonam for the treatment of ABSSSIs [45,46], and is safer 
and more efficacious than tigecycline [47]. Compared with 
moxifloxacin, delafloxacin was effective against CABP [48]. 
In seven hospitals in New York City, 22% of MRSA isolates 
were resistant to delafloxacin [49]. Therefore, it is important 
to determine the delafloxacin susceptibility of MRSA strains 
isolated in Republic of Korea.

AGENTS TARGETING GRAM-NEGATIVE  
BACTERIA

Table 2 lists the novel antibiotics active against MDR 
Gram-negative bacteria approved by the FDA and EMA 
from 2009 to October 2021. Their activities against MDR 
Gram-negative bacteria are described in Table 3.

Cefiderocol
Cefiderocol was the first novel siderophore cephalospo-
rin approved for MDR Gram-negative pathogens. It has a 
unique iron transporter-based mechanism that uses the sid-
erophore–iron complex pathway of Gram-negative bacteria 
to enable penetration of the bacterial outer membrane [50]. 
Cefiderocol is active against all Ambler classes of β-lact-
amases (e.g., K. pneumoniae carbapenemase [KPC], Verona 
integron-encoded metallo-β-lactamase, oxacillinase [OX-
A]-48-like carbapenemases), and New Delhi metallo-β-lac-
tamase (NDM) [51,52]. It also has considerable activity 
against MRAB, MRPA, and Stenotrophomonas maltophilia 
[52-56].

In a phase 2 study, cefiderocol was noninferior to imipe-
nem-cilastatin for patients with complicated urinary tract 
infections (cUTIs) caused by Gram-negative bacteria [57]. 
In a phase 3 study of treatments for nosocomial pneumo-
nia caused by Gram-negative pathogens, cefiderocol was 
noninferior to high-dose, extended-infusion meropenem 
[58]. In another phase 3 study, its efficacy and safety for 
the treatment for serious infections caused by carbapen-
em-resistant Gram-negative bacteria were confirmed in 
comparison to the best-available therapy. However, there 
were more deaths in the cefiderocol group than in the best 
available therapy group (34% vs. 18%) by the end of the 
study period, particularly in patients with Acinetobacter spp. 
infections [59]. Resistance to cefiderocol has been reported 
[60,61].

Ceftazidime-avibactam
Ceftazidime-avibactam is a combination of a third-generation 
cephalosporin and a newly developed non-β-lactam β-lact-
amase inhibitor, prepared at a fixed ceftazidime: avibactam 
ratio of 4:1 [62]. It has high activity against ESBL-, AmpC-, 
KPC-, and OXA-48-producing Enterobacterales. Moreover, 
MRPA is susceptible to ceftazidime-avibactam [52]. Howev-
er, the drug is not active against most Acinetobacter species 
or metallo-β-lactamase-producing isolates [63].
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Ceftazidime-avibactam plus metronidazole exhibited 
noninferiority to meropenem in a phase 3 study of patients 
with complicated intraabdominal infections [64]. Ceftazi-
dime-avibactam was noninferior to doripenem for the treat-
ment of cUTIs [65]. The microbiological eradication rate was 
77.4% in the ceftazidime-avibactam group and 71.0% in 

the doripenem group (95% CI for the difference, 0.33% 
to 12.36%). Ceftazidime-avibactam exhibited high activity 
against KPC-producing CRE compared to colistin in a pro-
spective observational study [66]. It is also reportedly nonin-
ferior to meropenem for the treatment of nosocomial pneu-
monia and ventilator-associated pneumonia [67].

Table 2. Characteristics of new Gram-negative antibacterial drugs that received regulatory approval by the FDA and EMA 

from 2009 to October 2021

Name Class
Approval 

status (year 
approved)

Cost
(2021 US$)a

Indications Dose and dosing interval

Cefiderocol Cephalosporin  
siderophore

FDA (2019), 
EMA (2020)

199.05  
(per 1 g)

cUTI, HABP/ 
VABP

2 g every 8 hr by IV infusion  
over 3 hr 

Ceftazidime- 
avibactam 

β-Lactam +  
diazabicyclooctane BLI

FDA (2015), 
EMA (2016)

375.55  
(per 2.5 g)

HABP/VABP, 
cIAI, cUTI

Ceftazidime: 2 g and avibactam:  
0.5 g by IV infusion over 2 hr every 8 hr 

Imipenem-cilasta-
tin-relebactam

β-Lactam + renal  
dehydropeptidase  
inhibitor + diazabicy-
clooctane BLI

FDA (2019), 
EMA (2020)

288.03 
 (per 1.25 g)

cIAI, cUTI, 
HABP/VABP

Imipenem: 500 mg, cilastatin:  
500 mg, and relebactam: 250 mg by  
IV infusion over 30 min every 6 hr 

Meropenem- 
vaborbactam

β-Lactam +  
boronate BLI

FDA (2017), 
EMA (2018)

196.99  
(per 2 g)

cUTI Meropenem: 2 g and vaborbactam: 2 g 
every 8 hr by IV infusion over 3 hr

Eravacycline Tetracycline FDA (2018), 
EMA (2018)

51.95  
(per 50 mg)

cIAI 1 mg/kg by IV infusion over  
approximately 60 min every 12 hr

FDA, U.S. Food and Drug Administration; EMA, European Medicines Agency; cUTI, complicated urinary tract infection; HABP, hos-
pital-acquired bacterial pneumonia; VABP, ventilator-associated bacterial pneumonia; IV, intravenous; BLI, β-lactamase inhibitor; 
cIAI, complicated intraabdominal infection.
aReferenced in the price guide on Drugs.com.

Table 3. Activities of novel antibiotics against Gram-negative bacteria

Novel antibiotics

Enterobacterales

Carbapenem- 
resistant Pseudo-
monas aeruginosa

Carbapen-
em-resistant 

Acinetobacter 
baumannii

Extended- 
spectrum  

β-lactamase

Class  
A carbapenemase 

(KPC)

Class  
B carbap-
enemase 
(NDM)

Class  
D carbapene-

mase (OXA-48-
like)

Cefiderocol Yes Yes Yes Yes Yes Yes

Ceftazidime- 
 avibactam

Yes Yes No Yes Yes No

Imipenem- 
 cilastatin-relebactam

Yes Yes No No Yes No

Meropenem- 
 vaborbactam

Yes Yes No No No No

Eravacycline Yes Yes Yes Yes No Yes

KPC, Klebsiella pneumoniae carbapenemase; NDM, New Delhi metallo-β-lactamase; OXA, oxacillinase.
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Because of the limited availability of therapeutic agents, 
ceftazidime-avibactam has emerged as an alternative to 
colistin for the treatment of infections caused by CRE 
[68,69]. Ceftazidime-avibactam resistance has been report-
ed in carbapenem-resistant K. pneumoniae isolates [70-72]. 
Therefore, the application of and rationale for the use of 
ceftazidime-avibactam require careful consideration [69,73].

Imipenem-cilastatin-relebactam
Imipenem-cilastatin-relebactam is a combination of a 
pre-existing carbapenem, imipenem-cilastatin, and a new 
β-lactamase inhibitor, relebactam. It has activity against 
KPC-producing, but not NDM-producing, Enterobacterales. 
It is also active against MRPA [52]. However, imipenem-cilas-
tatin-relebactam has limited activity against A. baumannii 
isolates that harbor class D β-lactamases [74].

Imipenem-cilastatin-relebactam reportedly exhibits non-
inferiority to piperacillin/tazobactam in patients with nos-
ocomial pneumonia and ventilator-associated pneumonia, 
including those at high risk [75,76]. In a phase 2 study in-
volving patients with cUTIs, imipenem-cilastatin-relebactam 
(125  mg relebactam) was noninferior to imipenem-cilas-
tatin (clinical response rate 97.1% vs. 98.8%) [77]. Imi-
penem-cilastatin-relebactam also yields favorable clinical 
responses in patients with imipenem-non-susceptible bacte-
rial infections and has a lower all-cause mortality rate than 
colistin plus imipenem-cilastatin [78].

Meropenem-vaborbactam
Meropenem-vaborbactam is the first approved combination 
of a carbapenem and a β-lactamase inhibitor. Meropen-
em-vaborbactam is effective against numerous Gram-neg-
ative bacteria, including KPC-producing CRE [52]. However, 
vaborbactam has no activity against NDM and OXA-48-like 
producers and does not improve the activity of meropen-
em against non-fermenting Gram-negative bacteria, such 
as carbapenem-resistant P. aeruginosa or Acinetobacter 
spp. [79]. In patients with cUTIs, meropenem-vaborbactam 
showed an overall treatment success rate of 98.4% in a 
randomized clinical trial and was noninferior to piperacil-
lin-tazobactam (overall success rate, 94.0%; 95% CI for the 
difference, 0.7% to 9.1%) [80]. In a study of CRE infec-
tions, meropenem-vaborbactam had a lower mortality rate, 
a higher clinical cure rate, and less nephrotoxicity than the 
best available therapy [81].

Eravacycline
Eravacycline is a novel fluorocycline antibiotic with a similar 
structure to tigecycline; however, eravacycline is more po-
tent against Gram-positive, Gran-negative, and anaerobic 
pathogens than tigecycline. Specifically, it is active against 
MRSA, VRE, ESBL-producing Enterobacterales, CRE, and 
MRAB. However, as for tigecycline, eravacycline has no ac-
tivity against P. aeruginosa, Morganella spp., Proteus spp., 
or Providencia spp. [52,82].

In a phase 3 study of patients with complicated intraab-
dominal infections, eravacycline exhibited noninferiority to 
meropenem (clinical cure rate, 90.8% vs. 91.2%; 95% CI, 
–6.3% to 5.3%) [83]. A randomized clinical trial compared 
eravacycline and levofloxacin for the treatment of cUTIs; 
however, to our knowledge, the results have not been pub-
lished [84]. Based on available data, eravacycline is a po-
tential alternative to conventional antibiotics for the treat-
ment of infections caused by MDR bacteria [69]. However, 
it should be used with caution to avoid the emergence of 
resistance [85].

CONCLUSIONS

Infections with MDR bacteria have high mortality rates 
[86,87]. Currently, few antibiotics are available in Republic 
of Korea. In addition to those covered in this review, other 
antibiotics—such as iclaprim, ceftobiprole medocaril, aztreo-
nam-avibactam, and darobactin—await regulatory approval 
by the FDA and EMA. To prevent the emergence of antibiot-
ic resistance, new antibiotics should not be used empirically; 
they should be based on the susceptibility of and resistance 
genes harbored by the causative bacteria. Rapid identifica-
tion of pathogens and resistance genes is essential for ef-
fective antibiotic treatment [88]. In addition, antimicrobial 
stewardship programs should be implemented in hospitals 
[89,90]. The Republic of Korean national action plan on an-
timicrobial resistance was established in 2016. Collaborative 
efforts by the government, academia, and pharmaceutical 
companies would expedite the regulatory approval of novel 
antibiotics in Republic of Korea, enhancing patient care and 
treatment.
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