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Chronic obstructive pulmonary disease (COPD) is a complex lung disease charac-
terized by a combination of airway disease and emphysema. Emphysema is classi-
fied as centrilobular emphysema (CLE), paraseptal emphysema (PSE), or panlobu-
lar emphysema (PLE), and airway disease extends from the respiratory, terminal, 
and preterminal bronchioles to the central segmental airways. Although clinical 
computed tomography (CT) cannot be used to visualize the small airways, mi-
cro-CT has shown that terminal bronchiole disease is more severe in CLE than in 
PSE and PLE, and micro-CT findings suggest that the loss and luminal narrow-
ing of terminal bronchioles is an early pathological change in CLE. Furthermore, 
the introduction of ultra-high-resolution CT has enabled direct evaluation of the 
proximal small (1 to 2-mm diameter) airways, and new CT analytical methods 
have enabled estimation of small airway disease and prediction of future COPD 
onset and lung function decline in smokers with and without COPD. This review 
discusses the literature on micro-CT and the technical advancements in clinical 
CT analysis for COPD. Hopefully, novel micro-CT findings will improve our un-
derstanding of the distinct pathogeneses of the emphysema subtypes to enable 
exploration of new therapeutic targets, and sophisticated CT imaging methods 
will be integrated into clinical practice to achieve more personalized manage-
ment.
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Recent advances in airway imaging using micro- 
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) impos-
es substantial social and economic burdens worldwide 
and causes considerable morbidity and mortality [1]. It 
is diagnosed by a combination of respiratory symptoms 
and airflow limitation, which are induced by complex 
structural alterations, including emphysema and airway 
disease, on spirometry. Structural evaluation was for-
merly based on histological assessment. However, given 

the invasiveness of sample acquisition and poor acces-
sibility of histological samples in clinical practice, chest 
computed tomography (CT) is used widely for morpho-
logical evaluation of the parenchyma and airways [2,3]. 
Although CT exposes patients to radiation, this imaging 
technique enables three-dimensional structural assess-
ment, which cannot be achieved easily with histology. 
Volumetric CT enables quantification of the extent of 
emphysema in the entire lungs and in specific lobes [4]. 
Emphysema severity on CT images is associated close-
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ly with impaired pulmonary function, symptoms, and 
health-related quality of life; more importantly, it can 
be used to predict future clinical outcomes, such as ex-
acerbation and mortality [5-10]. Furthermore, visual CT 
assessment is used to classify emphysema as centrilob-
ular emphysema (CLE), panlobular emphysema (PLE), 
and paraseptal emphysema (PSE) [3], which have distinct 
clinical features [11-13].

Like those of emphysema, structural airway changes 
of COPD can be evaluated by CT. However, its limited 
resolution hinders quantification of the dimensions of 
small (< 2-mm-diameter) airways, and these airways are 
important major pathological sites of COPD [14]. As an 
alternative, researchers have evaluated the central air-
ways based on the assumption that small airway disease 
extends to the central airways in COPD [15]. The dimen-
sions of the central airways on CT images are associat-
ed with pulmonary function, symptoms, and the risk of 
exacerbation in COPD [5,6,9,15-18]. Moreover, novel im-
aging equipment and analytical methods, including ul-
tra-high-resolution computed tomography (U-HRCT), 
and nonrigid registrations of inspiratory and expira-
tory CT scans, have enabled the evaluation of non-em-
physematous air trapping, which is induced mainly by 
small airway disease [19,20]. These findings have estab-
lished the clinical relevance of airway imaging in living 
patients with COPD.

The use of micro-CT has been introduced in COPD 
research [21-24]. Although it cannot be performed on 
live patients, micro-CT generates high-resolution vol-
umetric images of lung tissue samples and enables the 
three-dimensional morphological analysis of small air-
ways such as terminal bronchioles (the last generation 
of conducting bronchioles) and transitional respiratory 
bronchioles (one level peripheral to the terminal bron-
chioles).

Based on the data obtained following recent advance-
ments in CT and micro-CT imaging of the airways in 
COPD, this review describes our pathological under-
standing of airway trees ranging from the segmental 
bronchus to the terminal bronchioles, the evaluation 
of the airway trees in patients with COPD using clinical 
CT, and future perspectives for airway imaging stud-
ies. The use of CT images was approved by the Ethics 
Committee of Kyoto University Hospital (approval no. 
R1660), and the requirement for informed consent was 

waived because retrospective data were used.

MICRO-CT

Micro-CT is a form of X-ray CT in which a sample is 
placed in the path of an X-ray beam to produce a pro-
jection image on detectors [25]. It enables the scanning 
of biological samples at spatial resolution as fine as 1 to 
2-μm [26]. However, the size of target samples is limited 
by the need to balance the setting of a field of view with 
the target image resolution. Many studies have involved 
the scanning of lung tissues, rather than whole lungs, 
to achieve sufficient image resolution for evaluation 
of the small airways, including the terminal bronchi-
oles [20,27-31]. Whereas Verleden et al. [32] scanned ex-
planted whole lungs using micro-CT at 150-μm spatial 
resolution for the counting of the branches of the entire 
airway tree, this review focuses on micro-CT findings in 
tissue specimens removed from lungs with COPD.

Table 1 summarizes the literature on micro-CT ex-
amination of the small airways in COPD. In 2011, Mc-
Donough et al. [28] first used micro-CT to evaluate the 
terminal bronchioles of lungs affected by COPD. The 
authors focused on the number of terminal bronchioles 
in severe COPD treated by lung transplantation in pa-
tients who had CLE or PLE associated with alpha-1 an-
titrypsin deficiency. Explanted lungs were inflated with 
air and frozen solid with liquid nitrogen vapor. Then, 
columnar tissue cores were removed from the lung slic-
es, fixed, dried, and scanned using a micro-CT device at 
approximately 10-μm voxel resolution. Lungs with CLE 
and PLE had fewer terminal bronchioles than did con-
trol donor lungs (2,400 ± 600, 6,200 ± 2,100, and 22,300 
± 3,900, respectively). Moreover, when the tissue sample 
cores were grouped based on the mean linear intercept 
(a marker of airspace enlargement), samples with even 
minimal emphysema had fewer terminal bronchioles 
than did samples from control lungs. This finding sug-
gests that a reduction in terminal bronchioles is not in-
duced solely by extensive parenchymal emphysematous 
destruction, and that the loss of terminal bronchioles in 
the early stage of the disease. 

Subsequently, Scott et al. [33] overcame the intrinsic 
problem that the difference in density between tissue 
and paraffin is too small to generate significant contrast 
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for the detection of tiny structures on micro-CT images 
of formalin-fixed paraffin-embedded (FFPE) samples. 
The authors established a novel scanning condition 
that enabled micro-CT scanning of routinely prepared 
FFPE samples, which may include surgically resected 
specimens and small pieces of tissue obtained by trans-
bronchial lung biopsy. Using this technique, Koo et al. 
[27] evaluated micro-CT images of FFPE tissue samples 
from lungs with mild COPD and demonstrated that 
these lungs had fewer terminal and transitional bron-
chioles than did control lungs, but that emphysematous 
changes on CT images did not differ between lungs 
with mild COPD and controls. Moreover, the authors’ 
use of micro-CT to identify the terminal bronchioles 
on histological sections revealed luminal obstruction in 
the remaining terminal bronchioles in lungs with mild 
and moderate COPD. These findings provide evidence 
that the loss of terminal bronchioles and remodeling of 
remaining terminal bronchioles are early pathological 
changes in COPD.

The same group performed three-dimensional struc-

tural evaluation of the terminal and preterminal bron-
chioles [34]. The authors established a method for com-
puter-based quantitation of the lumen and wall areas 
and the number of alveolar attachments to the outer 
bronchiole walls. They found that the lumen area was 
smaller in lungs with CLE than in those with PLE and 
controls, whereas the number of alveolar attachments 
was similarly decreased in lungs with CLE and PLE 
compared with the controls. Moreover, wall thickness 
was associated closely with the number of alveolar at-
tachments in the preterminal bronchioles in lungs with 
CLE, but not in lungs with PLE or controls. These find-
ings suggest that airway remodeling damages the sur-
rounding parenchymal tissues by destroying alveolar 
attachments in lungs affected predominantly by CLE.

Because micro-CT cannot provide information on 
molecular features, Vasilescu et al. [29] invented a meth-
od for the scanning of frozen tissue samples and their 
processing for histological assessment. Accurate match-
ing of micro-CT images to histological sections has 
enabled the identification of target bronchioles on his-

Table 1. Micro-computed tomography findings in the terminal bronchioles of lungs with COPD

Micro-CT findings on terminal bronchioles Lung samples Reference

The number of terminal bronchioles was lower in CLE and PLE than control 
lungs. The lower terminal bronchiolar number was found even in regions without 
emphysema.

CLE and PLE  
(very severe COPD)

[28]

Luminal narrowing, wall thickening, and loss of alveolar attachments in preterminal 
bronchioles were more severe in CLE than in PLE and controls.

CLE and PLE
(very severe COPD)

[34]

The number of terminal bronchioles was lower in mild-to-moderate COPD than 
controls. The remaining terminal bronchiole was obstructed and narrowed in COPD.

Mild-moderate COPD [27]

The number of terminal bronchioles, the luminal area and alveolar attachments of 
the remaining terminal bronchioles were lower in COPD than controls. The loss of 
alveolar attachments was associated with an increase in B cell infiltration to the wall 
of the terminal bronchioles.

Very severe COPD [35]

Regions with functional small airway disease (PRMfSAD) on MDCT were closely 
associated with fewer terminal bronchioles and luminal narrowing of the terminal 
bronchioles, but not with airspace enlargement. Regions with emphysema (PRMEmph) 
was associated with airspace enlargement and loss of alveolar attachments.

Very severe COPD [20]

Total airway count (TAC) on MDCT was associated with the number of terminal 
bronchioles on micro-CT.

Very severe COPD [56]

The number of the terminal bronchioles and the lumen of the remaining terminal 
bronchioles were lower in severe CLE-dominant regions than in severe PSE regions 
and mild emphysema regions. The disease of the terminal bronchioles did not differ 
between severe PSE-dominant and mild emphysema regions.

CLE and PSE
(very severe COPD)

[36]

COPD, chronic obstructive pulmonary disease; CT, computed tomography; CLE, centrilobular emphysema; PLE, panlobular 
emphysema; PRM, parametric response mapping; MDCT, multidetector computed tomography; PSE, paraseptal emphysema.
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tology. Tanabe et al. [35] showed that B-cell infiltration 
of the terminal and preterminal bronchiole walls was 
associated with a reduction in the number of alveolar 
attachments. This finding supports the concept that air-
way inflammation disrupts the alveolar walls attached to 
the bronchioles.

Tanabe et al. [36] examined the microstructure of tis-
sue samples obtained from explanted lungs with very 
severe COPD treated by lung transplantation. Nine-
ty-six tissue samples were assigned to mild emphysema, 
PSE-dominant severe emphysema, and CLE-dominant 
severe emphysema groups (n = 32, each). The CLE-domi-
nant samples had fewer terminal bronchioles and small-
er lumen areas of remaining terminal bronchioles than 
did the PSE-dominant and mild emphysema samples, 
with no difference between the latter.

Overall, micro-CT has revealed that terminal bron-
chiole disease differs among CLE, PLE, and PSE. The 
loss of terminal bronchioles and the close relationship 
between wall remodeling and the loss of terminal bron-
chiole alveolar attachments may be early pathological 
features of CLE, whereas the terminal bronchioles are 
more preserved in PSE. These distinct pathological 
changes may explain the greater severity of airflow lim-
itation and other symptoms in patients with CLE than 
in those with PSE.

U-HRCT

Because the collection of tissue samples for histology 
and micro-CT is too invasive for clinical practice, CT 
has been used to evaluate airway structure in patients 
with COPD. However, standard CT (512 × 512 matrix 
and ≥ 0.5-mm slice thickness) does not enable accurate 
evaluation of smaller (< 2-mm-diameter) airways due to 
its limited resolution. Oguma et al. [37] used an airway 
phantom of 2-mm lumen diameter and 0.5-mm wall 
thickness, and showed that the analysis of CT images 
obtained with a 512 × 512 matrix resulted in the overesti-
mation of wall thickness and underestimation of lumen 
area.

U-HRCT has recently become commercially available. 
It provides greater spatial resolution (0.14 mm/pixel) 
due to the use of 1,024 × 1,024 and 2,048 × 2,048 matrices 
with no increase in radiation exposure [24,38,39]. Stud-

ies performed with airway phantoms (2-mm-diameter, 
0.5-mm wall thickness) have shown that the lumen area 
measurement error is minimal for U-HRCT performed 
with the 1,024 × 1,024 matrix, but not for a conventional 
512 × 512-matrix scan, and that U-HRCT enabled the ac-
curate quantification of lumen size in peripheral airways 
with diameters as small as 1 mm [21,22]. Whereas optical 
coherence tomography revealed small (< 2-mm-diame-
ter) airways at the seventh (or higher) airway generation 
in healthy non-smokers [40], U-HRCT showed that the 
lumen diameters of more than half of sixth-generation 
airways were < 2 mm in COPD [22], consistent with 
the notion that airway narrowing is a feature of COPD 
[14,20,41-44]. Fig. 1 shows an example of cross-sectional 
U-HRCT images of the segmental (third-generation) to 
10th-generation airways in smokers with and without 
COPD. The airway lumina were smaller in patients with 
than in those without COPD. Although central airways 
with diameters > 2 mm have been examined using con-
ventional CT and the preterminal, terminal, and respi-
ratory bronchioles have been examined using micro-CT 
and histology, much remains to be learned about the 
proximal airways with diameters of 1 to 2 mm. Further 
U-HRCT studies are needed to clarify the detailed mor-
phological features of the proximal small airways.

UPDATE ON METHODS USED TO EVALUATE 
AIRWAY DISEASE ON INSPIRATORY CT IMAGES

Inspiratory CT is used widely for patients with COPD 
for multiple clinical purposes, such as lung cancer 
screening [45]. In addition to methods for the direct 
measurement of the central airway wall and lumen sizes 
[9], several methods for evaluation of the extent of airway 
disease have been proposed (Table 2) [5,6,9,15,22,41,46-55]. 
Because the airway thickness wall is associated closely 
with the native airway lumen size, the square root of 
the wall area of a theoretical airway with an internal pe-
rimeter of 10 mm was proposed to represent the airway 
size-adjusted wall thickness, termed Pi10. Pi10 is calcu-
lated by plotting the internal perimeters of all measured 
airways against the square root of the airway wall area 
[5,15,46]. Moreover, Oguma et al. [47] measured the radius 
of the lumen along the longitudinal path of the right 
posterior lower bronchus. They expressed the radius 
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as a function of the distance from the carina, obtained 
the regression line, and evaluated longitudinal airway 
lumen shape irregularity by calculating the coefficient 
of variation for deviations from the regression line. They 
observed more longitudinal lumen shape irregularity in 
COPD than in asthma, but more severe wall thickening 
and luminal narrowing in asthma than in COPD. These 
findings suggest the potential of combined cross-sec-
tional and longitudinal airway structural analyses for 
the evaluation of airway diseases.

Diaz et al. [48] showed that the numbers of airways vis-
ible on inspiratory CT images was reduced in severe em-
physema. Subsequently, Kirby et al. [49] showed that the 
total airway count (TAC) was lower even in mild COPD. 
Notably, a decrease in the TAC on CT images predicted 
future lung function decline independent of emphy-

sema severity. Furthermore, the same group tested the 
hypothesis that the pathological process responsible for 
terminal bronchiole loss and remodeling extended into 
the central airways detectable on clinical CT scans [56]. 
They found that the TAC was associated with the num-
ber of terminal bronchioles, wall area percent (WA%), 
lumen circularity, and number of alveolar attachments 
for the remaining terminal bronchioles on micro-CT 
images. Thus, the TAC on inspiratory CT images could 
be useful for the assessment of airway disease from the 
segmental to the terminal bronchioles in COPD.

Long-term longitudinal observational studies have 
demonstrated that the trajectory of lung function is 
heterogeneous [57-59]. Not all subjects show accelerated 
lung function decline after normal lung growth. Abnor-
mal lung growth increases the incidence of COPD, even 

Figure 1. Ultra-high-resolution computed tomography images of airways in smokers with and without chronic obstructive 
pulmonary disease (COPD). (A) Airway tree in a smoker without COPD. Longitudinal paths for the airway tree were extracted, 
and (B) cross-sectional ultra-high-resolution computed tomography (U-HRCT) images of airways were constructed. (C) Airway 
tree and (D) cross-sectional images of the airways in a smoker with COPD. The lumina were smaller than in the smoker with-
out COPD. The third-generation airway indicates the right lower posterior segmental airway. A phantom study [22] showed 
that the lumen area of airways with diameters > 1 mm can be measured accurately on U-HRCT images. Scale bar, 10 mm. 
FEV1, force expiratory volume in 1 second; FVC, force vital capacity.

A

C

B

D
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in patients with normal lung function decline [57]. In 
particular, a mismatch between airway and lung sizes, 
termed dysanapsis, induced by abnormal lung growth 
in early life correlates closely with poor lung function 
[60,61]. In a volumetric CT study, the airway volume to 
lung volume ratio (AWV%) decreased with the increas-
ing severity of COPD, and a decrease in the AWV% was 
associated with airflow limitation and air trapping inde-
pendent of emphysema and the TAC [50]. Fig. 2 shows 
examples of cases with different airflow limitations, 
TACs, and AWV%s.

More recently, Smith et al. [51] used a large dataset 
from the Multi-Ethnic Study of Atherosclerosis Lung 
Study (n = 2,531), the Canadian Cohort of Obstructive 
Lung Disease (n = 1,272), and the Subpopulations and 
Intermediate Outcome Measures in COPD Study (n = 
2,726) to evaluate dysanapsis by quantifying the ratio of 
the average central airway lumen diameter to the cube 
root of lung volume (airway-to-lung ratio). The authors 
found that dysanapsis characterized by a lower airway 

tree caliber relative to lung size was associated with a 
greater risk of COPD. Subsequently, a study performed 
using a combination of CT and micro-CT [62] showed 
that central airway dysanapsis on CT images was associ-
ated with terminal bronchiole size on micro-CT images, 
and suggested that dysanapsis causes increased resis-
tance of the central and peripheral airways and enhanc-
es susceptibility to COPD.

Instead of counting all branches of airway trees (i.e., 
TAC calculation) or measuring the airway tree size, 
Bodduluri et al. [52] performed a morphological analy-
sis of airway trees with calculation of the airway fractal 
dimension (AFD). Lower AFDs were associated with air-
flow limitation, impairments of health-related quality 
of life and exercise capacity, longitudinal lung function 
decline, exacerbation, and mortality. The simulation 
revealed that a reduction in the AFD reflected airway 
loss and luminal narrowing. Bhatt et al. [53] compared 
the associations of the WA%, Pi10, AFD, and TAC with 
chronic bronchitis symptoms, and found that higher 

Table 2. Computed tomography evaluation of airway disease in COPD

CT index Definition Clinical features Reference

Wall thickness - Associated with symptoms and exacerbations [6,9]

Lumen area - Associated with lung function: responds to 
bronchodilators

[22,41,55]

WA% Ratio of wall area to sum of wall and 
lumen area

Associated with lung function and symptoms [9,53]

Pi10 The square root of the wall area of 
a theoretical airway with internal 
perimeter 10 mm

Global measure of airway remodelling: associated 
with symptoms, function, and clinical outcomes

[5,15,46]

TAC Total airway count Predicts future lung function decline [48,49,53]

Lumen irregularity Variability in lumen radius along the 
longitudinal path

Differentiates COPD from asthma [47]

AWV% Airway volume to lung volume ratio Associated with airflow limitation and air-
trapping

[50]

Airway-to-lung 
ratio

Airway lumen area to lung volume ratio Predicts future COPD development [51]

AFD Fractal dimension of airway tree Associated with symptoms, exercise tolerance, 
and lung function: predicts exacerbations

[52,53]

SA/V Airway surface-area-to-volume ratio for 
segmented airway tree

Identifies two trajectories of airway disease: 
predominant loss of airways and luminal 
narrowing

[54]

COPD, chronic obstructive pulmonary disease; CT, computed tomography; WA%, wall area percent; Pi10, the square root of 
the wall area of a theoretical airway with internal perimeter 10 mm; TAC, total airway count; AWV%, airway volume percent; 
AFD, airway fractal dimension; SA/V, airway surface-area-to-volume ratio.
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AFD and TAC values were associated with a lower risk 
of persistent chronic bronchitis. The same group used 
the airway surface-area-to-volume ratio (SA/V) to distin-
guish subjects with predominant airway loss from those 
with luminal narrowing [54]. With a simulation, the 
authors showed that a reduction in the SA/V reflected 
airway loss, rather than luminal narrowing. Their longi-
tudinal data further showed that the mortality rate was 
higher in subjects with predominant airway loss than in 
those with predominant luminal narrowing.

NONRIGID REGISTRATION OF INSPIRATORY/
EXPIRATORY CT PARAMETERS

Methods for the analysis of the central airways have im-
proved substantially, enabling the estimation of small 
airway disease in COPD [15,56]. Additionally, U-HRCT 
has enabled the direct evaluation of small (1 to 2-mm-di-
ameter) airways [22]. Moreover, technical advancements 
have enabled the separate localization of emphysema 
and non-emphysematous air trapping in the lungs 
through the use of nonrigid registration for inspiratory 
and expiratory CT [19,63,64].

The concept that low-attenuation regions on expira-
tory CT images reflect air trapping is not new [65]. How-
ever, air trapping in lungs with COPD can be affected 

by multiple factors, such as emphysema and small air-
way disease. Galban et al. [19] established parametric 
response mapping (PRM), which nonrigidly registers 
inspiratory CT to expiratory CT parameters on a vox-
el-to-voxel basis, and defined voxels with CT < −950 HU 
on registered inspiratory CT scans and < −856 HU on ex-
piratory CT scans as indicating functional small airway 
disease (PRMfSAD). Regions with PRMfSAD corresponded 
to non-emphysematous air trapping. Vasilescu et al. [20] 
performed CT and micro-CT examinations of lungs 
from patients with severe COPD treated by lung trans-
plantation and control subjects. By registering regions 
of interest on CT images to the tissue sample locations 
used for micro-CT, they associated regions with PRMf-

SAD with disease of the terminal bronchioles, but not with 
the extent of emphysema on micro-CT images. This 
finding indicates that non-emphysematous air trapping 
on inspiratory/expiratory CT images is induced by small 
airway disease. The use of this technique has shown that 
non-emphysematous air trapping on CT images is a 
radiological precursor of emphysema [66], is associated 
with physiological indices of small airway disease [63,67], 
and predicts longitudinal lung function decline [68]. A 
very recent study showed that airway-dominant COPD, 
defined as a higher WA% of the segmental airways, 
was associated with smaller right main and intermedi-
us bronchi, but not non-emphysematous air trapping 

Figure 2. Airway trees and lungs in smokers with different degrees of airflow limitation. Airway trees and lungs were extracted 
from computed tomography images. (A) Smoker without airflow limitation. (B) Smoker with chronic obstructive pulmonary 
disease (COPD) and moderate airflow limitation. (C) Smoker with COPD and severe airflow limitation. The total airway count 
(TAC) and airway volume to lung volume ratio (AWV%) were lesser in case C than in case A. The AWV% was calculated using 
the volume of the airway tree, excluding the trachea. FEV1, force expiratory volume in 1 second; FVC, force vital capacity.

FEV1/FVC 0.90 FEV1(%pred) 84%
TAC 680, AWV% 1.58%

FEV1/FVC 0.40 FEV1(%pred) 58%
TAC 331, AWV% = 0.75%

FEV1/FVC 0.31 FEV1(%pred) 20%
TAC 246, AWV% = 0.72%A B C

www.kjim.org


1301

 

Tanabe N and Hirai T. Airway imaging for COPD

www.kjim.orghttps://doi.org/10.3904/kjim.2021.124

on CT images, whereas emphysema-dominant COPD 
was associated with increased non-emphysematous air 
trapping [69]. These findings are consistent with those 
of Young et al. [70], who suggested that central airway 
disease precedes peripheral lung disease in a portion of 
smokers with COPD.

The nonrigid registration of paired inspiratory and 
expiratory CT parameters has been also used to calculate 
local respiratory volume changes in COPD and asthma 
[71-73]. Bhatt et al. [74] showed that respiratory volume 
changes in normal regions near emphysema are associ-
ated with subsequent lung function decline in smokers. 
Chae et al. [75] showed that the extent of low ventilation 
areas measured on paired inspiratory and expiratory CT 
scans was associated with functional impairments and 
emphysema in patients with COPD. Haghighi et al. [76] 
performed an imaging-based cluster analysis of 406 for-
mer smokers using CT indices such as lung shape, cen-
tral airway branching angle, wall thickness, lumen di-
ameter, airway circularity, emphysema, functional small 
airway disease, and local respiratory volume changes. 
The analysis yielded four clusters; in terms of airway 
morphology, cluster 1 was characterized by airway wall 
thickening, whereas cluster 4 was characterized by air-
way wall thinning, which reflects the heterogeneity of 
airway structural changes in smokers.

CONCLUSIONS

In this review, we summarized recent advancements in 
methods for the evaluation of airway disease in COPD. 
Micro-CT has enabled three-dimensional visualization 
of the transitional, terminal, and preterminal bronchi-
oles and clarification of the pathological roles of small 
airway disease in different emphysema subtypes. In 
CLE, terminal bronchiole disease appears to be an ear-
ly pathological change, and the loss of alveolar attach-
ments may link small airway disease and emphysema. 
The terminal bronchioles are more preserved in PSE 
than in CLE, suggesting that potential therapeutic tar-
gets for these emphysema subtypes differ. Moreover, the 
introduction of U-HRCT and the technical progress in 
the analytical methods of multidetector computed to-
mography (MDCT) have enabled us to understand the 
complex structural alteration of airway trees and even 

estimate the extent of disease in terminal bronchioles 
that cannot be visualized directly by MDCT. Because we 
still need to determine the responses to pharmacologi-
cal and non-pharmacological interventions and estab-
lish preventive strategies for COPD development, future 
studies should investigate whether different interven-
tions induce distinct structural changes in airway trees, 
and whether the detailed morphology of the airway tree 
predicts the response to an intervention and allows for 
personalized management of COPD.
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