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INTRODUCTION 

Rheumatoid arthritis (RA) is a chronic and debilitating 
autoimmune disease characterized by the interaction of 
various inflammatory mediators and cells [1]. Although 
the etiology of RA is not clear, inflammatory cytokines 
and tissue-destructive molecules play key roles in the 
initiation and progression of the inflammatory process-
es that characterize the disease [2]. Accordingly, biolog-
ical agents that inhibit proinflammatory cytokines have 
been widely used in the treatment of RA [3].

Macrophage migration inhibitory factor (MIF) is an 
evolutionarily ancient and highly conserved cytokine 
that was originally described as an activity of cognate  
T cell supernatants that inhibits macrophage migration 
[4]. MIF is cloned and purified, and its activity character-

ized at the molecular level in 1993 [5]. MIF is structurally 
unique; it has a monomeric molecular mass of 12.5 kDa 
and consists of two antiparallel α-helices that together 
with six β-pleated sheets form the extended secondary 
structure of the molecule. Biophysical studies indicate 
that, in its active form, MIF is a homotrimeric molecule 
with topological homology to only one other mammali-
an protein, the enzyme d-dopachrome tautomerase [6], 
a broad-spectrum intra- and extracellular protein pro-
duced by a variety of cell types, including monocytes/
macrophages [7], lymphocytes [8], eosinophils [9], neu-
trophils [10], epithelial cells [11,12], endothelial cells [13], 
and smooth muscle cells [14]. By contrast, MIF has a 
chemokine-like function, promoting the migration and 
recruitment of leukocytes to infectious and inflamma-
tory sites [15]. 

1Convergent Research Consortium 
for Immunologic Disease, College of 
Medicine, Seoul St. Mary’s Hospital, 
The Catholic University of Korea, 
Seoul; 2Division of Rheumatology, 
Department of Internal Medicine, 
Research Institute of Medical 
Science, Konkuk University School of 
Medicine, Seoul, Korea

Macrophage migration inhibitory factor (MIF) is originally identif ied in the 
culture medium of activated T lymphocytes as a soluble factor that inhibits the 
random migration of macrophages. MIF is now recognized as a multipotent cy-
tokine involved in the regulation of immune and inf lammatory responses. In 
rheumatoid arthritis (RA), MIF promotes inf lammatory responses by inducing 
proinflammatory cytokines and tissue-degrading molecules, promoting the pro-
liferation and survival of synovial fibroblasts, stimulating neutrophil chemotaxis, 
and regulating angiogenesis and osteoclast differentiation. Expression of MIF in 
synovial tissue and synovial fluid levels of MIF are elevated in RA patients. Specif-
ically, MIF levels correlate with RA disease activity and high levels are associated 
with bone erosion. In animal models of RA, the genetic and therapeutic inhibi-
tion of MIF has been shown to control inflammation and bone destruction. Based 
on the role of MIF in RA pathogenesis, small molecular inhibitors targeting it or 
its receptor pathways could provide a new therapeutic option for RA patients. 

Keywords: Macrophage migration-inhibitory factors; Arthritis, rheumatoid; In-
flammation; Small molecular inhibitor

Macrophage migration inhibitory factor: a potential 
therapeutic target for rheumatoid arthritis 
Kyoung-Woon Kim1 and Hae-Rim Kim2

Received : April 7, 2016
Accepted : April 26, 2016

Correspondence to 
Hae-Rim Kim, M.D.
Division of Rheumatology,  
Department of Internal  
Medicine, Konkuk University 
School of Medicine, 120-1  
Neungdong-ro, Gwangjin-gu, 
Seoul 05030, Korea 
Tel: +82-2-2030-7542
Fax: +82-2-2030-7748
E-mail: kimhaerim@kuh.ac.kr

http://crossmark.crossref.org/dialog/?doi=10.3904/kjim.2016.098&domain=pdf&date_stamp=2016-07-01


635

Kim KW and Kim HR. MIF: a porential therapeutic target for RA

www.kjim.orghttp://dx.doi.org/10.3904/kjim.2016.098

MIF is stored in pre-formed cytoplasmic pools and is 
rapidly released in response to stimuli such as micro-
bial products, proliferative signals, and hypoxia [7,16,17]. 
One of the earliest physiological functions described for 
MIF was as a counter-regulator of glucocorticoid-medi-
ated suppression of immune cell responses [18], which is 
important for the regulation of systemic inflammatory 
responses in settings such as invasive stress or acute ill-
ness, characterized by high adrenal glucocorticoid lev-
els. MIF also plays a pivotal upstream role in sustaining 
immune cell survival, by inhibiting activation-induced 
apoptosis. This effect serves to provide for optimal but, 
in some pathologic circumstances, excessive, inflamma-
tory responses [19]. 

MIF participates in the pathogenesis of many inflam-
matory diseases, including colitis [20], multiple sclerosis 
[21,22], systemic lupus erythematosus [23,24], glomeru-
lonephritis [25,26], psoriasis [27,28], and diseases more 
recently recognized as inflammatory, such as atheroma 
formation and even atheromatous plaque rupture. 

MIF IN THE PATHOGENESIS OF RA

Expression of MIF is increased in the arthritic joints of 
patients with juvenile idiopathic arthritis and in those 
with RA [29-31]. Serum and synovial fluid levels of MIF are 
also higher in RA patients than in either osteoarthritis 
patients or healthy volunteers. These high levels are as-
sociated with bone erosion and disease activity [26,32-34]. 

MIF stimulates the release of tumor necrosis factor 
(TNF), interleukin IL-1, IL-6, IL-8, and prostaglandin 
from macrophages and synovial fibroblasts to induce 
matrix metalloproteinase (MMP)-1 and MMP-3, phos-
pholipase A2, and cyclooxygenase-2, which together 
lead to tissue degradation in RA-related processes [35]. 
MIF also induces MMP-9 and MMP-13 in rat osteo-
blasts, which may be relevant to the bone destruction 
and osteoporosis characteristic of RA [36]. Tissue deg-
radation by MMPs is a typical pathological feature of 
RA. MIF contributes to this process by up-regulating 
MMP-1 and MMP-3 mRNA levels in synovial fibroblasts, 
which in large part are responsible for the degradation 
of extracellular matrix components in RA (Fig. 1) [35]. 
The up-regulation of MMP genes by MIF is probably 
mediated by a complex regulatory system. Glucocorti-

coids repress MMP-1 gene transcription via the interac-
tion of glucocorticoid receptor proteins with the activa-
tor protein (AP)-1 complex [37]. The interaction of MIF 
and glucocorticoid/AP-1 was reported by Chauchereau 
and coworkers [38], who showed that Jun activation do-
main-binding protein-1 (Jab1)/CSN5 COP9 signalosome 
subunit 5 (CSN5) binds to the glucocorticoid receptor. 
Together, these studies demonstrated the potent count-
er-regulatory activity of MIF in the glucocorticoid-me-
diated control of inflammation in general [39] and syno-
vial inflammation in particular [40].

MIF induces proliferation of human RA synovial fi-
broblasts and inhibits both p53 expression and apop-
tosis [41,42]. Accordingly, MIF inhibition would con-
vey a proapoptotic signal to these hyperplastic cells. 
MIF-mediated inhibition of p53 expression and apop-
tosis prolongs cell survival and has been described in 
macrophages [19]. MIF also interacts closely with various 
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Figure 1. The role of macrophage migration inhibitory 
factor (MIF) in the pathogenesis of rheumatoid arthritis 
(RA). MIF stimulates the release of tumor necrosis factor 
(TNF)-α, interleukin (IL)-1, IL-6, IL-8, and prostaglandin 
from macrophages and synovial fibroblasts to induce ma-
trix metalloproteinase (MMP)-1 and MMP-3, phospholipase 
A2, cyclooxygenase-2, which in RA patients may lead to 
tissue degradation. MIF also induces MMP-9 and MMP-
13 in rat osteoblasts; a similar response may account for the 
bone destruction and osteoporosis characteristic of RA. 
MIF induces the production of vascular endothelial growth 
factor (VEGF) and IL-8 from synovial fibroblasts as well as 
endothelial tube formation. It also stimulates receptor acti-
vator of nuclear factor kB ligand (RANKL) production by RA 
synovial fibroblasts and causes differentiation of peripheral 
blood monocytes to mature osteoclasts. PGE2, prostaglan-
din E2; NO, nitric oxide; VCAM, vascular cell adhesion mol-
ecule; ICAM, intercellular adhesion molecule.
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proinflammatory cytokines and plays a major role in in-
nate immunity against bacterial infections, by enhanc-
ing TNF-α secretion [5], Toll-like receptor 4 expression 
[43], phagocytosis, and intracellular killing mechanisms 
[44]. In addition, it is equally efficiently involved in the 
adaptive immune response, by favoring Th1 activation 
and differentiation. The autocrine and paracrine effects 
of MIF on immune cell activation include the induction 
of IL-1 and TNF, which in turn stimulate further MIF 
production [18,45]. Endogenous MIF is required for IL-
1- and TNF-induced mitogen-activated protein kinase 
(MAPK) activation and regulates the expression of the 
receptors for these cytokines [46]. 

Anti-TNF therapy in RA patients diminishes the se-
rum levels of the chemokine chemerin, a specific che-
moattractant for macrophages and dendritic cells. The 
suppression of these MIF-producing cells decreases 
serum MIF concentrations, which in turn reduces in-
flammation [47]. The arthritic joints in MIF-mice have 
lower serum IL-1β and IL-6 levels, but the levels of these 
cytokines are restored when the defect in these mice is 
reconstituted using wild-type macrophages. 

Vascular endothelial cells play vital roles in systemic 
inflammatory and immunological events; for example, 
the cytokines and growth factors produced by endothe-
lial cells participate in complex inflammatory processes 
[48]. MIF mRNA is not limited to T lymphocytes or mac-
rophages but is also expressed in vascular endothelial 
cells. In RA patients, serum and synovial fluid MIF levels 
correlate with vascular endothelial growth factor (VEGF) 
levels. MIF stimulates synovial fibroblasts to produce 
VEGF and IL-8; in vitro, it stimulates human umbilical 
vein endothelial cells to increase vascular tube forma-
tion [49]. Endothelial cells also readily secrete their cy-
toplasmic stores of MIF in response to the presence of 
a bacterial component, such as in infectious states. MIF 
subsequently initiates production of the proinflamma-
tory cytokines TNF-α and IL-1. Thus, MIF is not only 
an initiator of the inflammatory process involving en-
dothelial cells but also acts as a growth factor in the re-
sponse to cellular damage. 

Although the data are controversial, an osteoclas-
togenic role for MIF in human RA has been reported. 
MIF stimulates both the production of receptor activa-
tor of nuclear factor kB ligand (RANKL) by RA synovial 
fibroblasts and the differentiation of peripheral blood 

monocytes to mature osteoclasts [50]. MIF-triggered 
RANKL expression is partially reduced by blockage of 
IL-1β, while osteoclastogenesis is suppressed by inhibi-
tion of nuclear factor-κB (NF-κB), phosphatidylinositol 
3-kinase (PI3K), p38 MAPK, and AP-1. Other studies have 
also shown that MIF significantly up-regulates MMP-13 
mRNA expression in rat primary osteoblasts, by activat-
ing Src-related tyrosine kinase, extracellular signal reg-
ulated kinase (ERK) 1/2, and AP-1-dependent signaling 
pathways [36]. Collectively, these results support a role 
for MIF as an upstream regulator of synovial cytokine 
expression in RA.

An association of MIF polymorphisms with RA has 
been described in a number of studies. In their study 
of a Chinese population, Liu et al. [51] reported that the 
MIF-173 C allele, in which there is an alteration in the 
MIF promoter region, may contribute to RA susceptibil-
ity and increase the risk of RA. Similarly, an association 
between the −794 CATT7 and −173*C alleles, which are 
in linkage disequilibrium, and the high clinical activity 
of RA has been reported [52]. Thus, MIF polymorphisms 
may be associated with both a higher risk and a greater 
severity of RA. 

Intracellular signal pathways of MIF
The signal transduction pathways used by MIF in its 
activation of cells and cellular events is incompletely 
defined, although cell-surface-receptor-mediated path-
ways have been implicated (Fig. 2) [53]. Recently, CD74, 
the cell surface form of the class II invariant chain, was 
identified as the receptor for MIF [54]. The interaction 
of MIF with CD74 activates MAPK pathways [53], and 
the phosphorylation of MAPKs leads to the expression 
of target genes that are important in inflammation and 
proliferation. These observations highlight the impor-
tance of MAPKs in RA [55]. The activation of distinct 
MAPK subtype cascades is dependent on the cell type 
and the nature of the stimuli used; furthermore, the 
functional role of each MAPK may differ depending on 
the cell type. In general, the ERK cascade mediates the 
proliferation, differentiation, and survival of signal-pro-
moting cells, whereas both p38 and JNK MAPKs are in-
volved in cell responses to environmental stresses and 
inflammatory cytokines [55,56]. MIF-induced ERK acti-
vation is associated with cell proliferation and prosta-
glandin E2 production [53]. This is in keeping with the 
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induction by MIF of a uniquely sustained phosphoryla-
tion of ERK [19], associated with increased NIH/3T3 pro-
liferation and enhanced phospholipase A2 activity. The 
finding that MIF up-regulation of these cellular events 
is not accompanied by p38 phosphorylation suggests the 
nonutility of this pathway. Although we demonstrated 
that MIF induces phosphorylation of p38 MAPK in RA 
synovial fibroblasts [57], the MIF-induced activation and 
proliferation of synovial fibroblast is mainly mediated 
by the ERK pathway [42,57]. Similarly, MIF phosphory-
lation of the ERK pathway occurs in the up-regulation 
of N-Myc protein expression in neuroblastoma tissues 
[58], in the growth and angiogenesis of murine colon 
cancer cells [59], and in the up-regulation of MMP-1 
in human dermal fibroblasts [60]. The latter study also 
shows that MIF phosphorylation of the JNK but not the 
p38 signaling pathway is involved in stimulating MMP-

1 expression [60]. The MIF-mediated activation of the 
MAPK pathway is further confirmed in a report show-
ing the activation by MIF of the c-jun element of AP-1 
transcription factor in its stimulation of MMP-1 and -3 
expression [35,36]. In addition, MIF activates PI3K and 
its effector kinase, Akt, to promote tumor growth and 
angiogenesis [59,61]. Clearly, MIF differentially activates 
distinct signaling pathways to stimulate target cells and 
cellular events.

The intracellular actions of MIF have also been stud-
ied. At high concentrations MIF influences the tran-
scriptional activity of AP-1, by interacting with Jab1 [62]. 
This interaction interrupts AP-1-dependent gene tran-
scription and inhibits the growth-promoting effects 
of Jab1 on fibroblasts. These events demonstrate the 
contrasting effects of MIF on inflammation and pro-
liferation, which may be related to its relative concen-
tration. Thus, high concentrations of MIF may inhibit 
AP-1-dependent events to prevent over-activation of the 
immune response [53,63,64].

THERAPEUTIC EFFECTS OF MIF INHIBITION 
IN RA ANIMAL MODELS

A role for MIF in inflammatory joint disease is first ex-
plored in the collagen-induced arthritis (CIA) mouse 
model, which showed that MIF antagonism delays the 
onset and decreases the frequency of arthritis [65]. MIF 
promotes Th1 immunity and anti-MIF treatment low-
ers serum immunoglobulin G2a levels, without signif-
icant effects on collagen type II-induced interferon-γ 
production. Moreover, the overall T-cell proliferative 
response to collagen type II is surprisingly higher in an-
ti-MIF-treated mice [65]. Further evidence of a role for 
MIF in RA comes from two cell-mediated animal mod-
els of RA. In rat adjuvant arthritis (AA), anti-MIF therapy 
dose-dependently reduces disease severity [66]. During 
disease development, MIF levels are increased in sera 
and synovial tissue, and an association between synovial 
MIF and ED1-positive macrophages has been reported 
[66]. Similarly, MIF antagonism decreases the severity of 
antigen induced  arthritis (AIA) in mice, as measured by 
synovial hypercellularity, and glucocorticoid treatment 
impedes disease development [40]. Glucocorticoid reg-
ulation of MIF is confirmed in vivo in AA rats [67]. Ad-
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Figure 2. Signal pathways of migration inhibitory factor 
(MIF). MIF is induced in response to cytokine production 
and, after its endocytosis, can interact with intracellular 
proteins such as Jun activation domain-binding protein-1 
( Jab1), thereby down-regulating mitogen-activated pro-
tein kinase (MAPK) signals and modulating cellular redox 
homeostasis. Extracellular MIF binds to the cell surface 
protein CD74 (invariant chain Ii). CD74 lacks a signal-trans-
ducing intracellular domain but interacts with the pro-
teoglycan CD44, which induce the activation of Src-family 
kinase and MAPK/extracellular signal-regulated kinase 
(ERK) pathways to either activate the phosphatidylinositol 
3-kinase (PI3K)/Akt pathway or initiate the p53-dependent 
inhibition of apoptosis. MIF also can bind and signal 
through G-protein-coupled chemokine receptors (GPCRs, 
e.g., CXCR2 and CXCR4) alone. Complex formation between 
CXCR2 and CD74, enabling accessory binding, appears to 
facilitate G protein-coupled receptor (GPCR) activation and 
the formation of a GPCR-receptor tyrosine kinases like sig-
naling complex to trigger calcium influx and rapid integrin 
activation.
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renalectomy prior to AA induction results in increased 
joint inflammation; in these animals, serum and pitu-
itary MIF levels are increased but, surprisingly, the lev-
els in the synovium are decreased. Nonetheless, MIF 
regulation of joint inflammation is still significant, as 
the protective effects of anti-MIF treatment are retained 
[67]. These findings suggest differential regulation of lo-
cal and systemic MIF in the context of AA. 

Further support for the role of MIF in RA comes from 
Mif–/– mice. Two studies demonstrate suppression of 
CIA in Mif–/– mice [68]. In the AIA model, Mif–/– mice has 
a reduced severity of histological arthritis, including ev-
idence of reduced cartilage damage [41]. The latter study 
also shows reduced proliferation of synoviocytes as well 
as increases in p53 expression and apoptosis in these 
cells in the absence of MIF (synoviocyte expansion con-
tributes significantly to the development of joint dam-
age in RA by facilitating the invasion of synovium into 
cartilage and bone). Studies using Mif–/– mice also im-
plicates MIF in the regulation of leukocyte recruitment 
in response to stimuli such as endotoxin and TNF, and 
directly demonstrated a requirement for MIF in leuko-
cyte recruitment into the joint [69]. These observations 
suggest that MIF contributes to the hypercellularity of 
RA synovial lesions through its effects on leukocyte re-
cruitment, proliferation, and survival (Table 1). 

MIF may also play a role in the blunted response to 
steroids. In the study by Santos and coworkers [40], 
dexamethasone treatment induces inhibition of AIA, 
whereas MIF treatment reverses the effect of the ad-
ministered steroid. AIA is significantly inhibited by an-
ti-MIF monoclonal antibodies whereas the synthesis of 
MIF by synovial cells is enhanced by low concentrations 
of glucocorticoids.

MIF is a proinflammatory cytokine with a broad range 

of cellular targets and functions. Other soluble proin-
flammatory cytokines, such as TNF and IL-1, have been 
successfully targeted in RA and other inflammatory dis-
eases using bioengineered soluble receptors or receptor 
antagonists and specific antibodies [70-73]. As a soluble 
cytokine, MIF and its recently discovered cell surface re-
ceptor CD74 suggest the potential of current technolo-
gies in targeting MIF in human inflammatory diseases. 
More importantly, the unique glucocorticoid-antago-
nistic capability of MIF provides an additional potential 
target in patients who have become resistant to gluco-
corticoid therapy during treatment for autoimmune 
disease. Continued investigation of the molecular im-
munology of MIF will provide better strategies to target 
it therapeutically. The success of this approach in RA 
will include reductions in inflammation, the protection 
of cartilage and bone, and the favorable reversal of the 
deficient apoptosis of RA synoviocytes, while leaving 
NF-κB dependent host defenses intact.

Taken together, these studies recommend further 
studies of MIF as a potential therapeutic target for RA. 
However, these must be preceded by elucidation of the 
role of MIF in RA.

CONCLUSIONS 

The various roles of MIF in the pathogenesis of RA in-
clude its promotion of the synthesis of proinflammato-
ry cytokines and tissue-degrading molecules as well as 
induction of osteoclast differentiation. The inhibition 
of MIF in animal models of arthritis is proof of the effi-
cient therapeutic effect of this approach in blocking the 
initiation and progression of arthritis. Small molecular 
inhibitors that regulate MIF or its signaling pathways 

Table 1. Therapeutic effect of MIF inhibition in rheumatoid arthritis animal models    

Animal model MIF inhibition Therapeutic effect Reference

Collagen-induced arthritis MIF antagonism Delays onset time, decreases arthritis/lowers IgG2a [65]

Rat adjuvant arthritis Anti-MIF Decreases disease severity [66]

Antigen-induced arthritis MIF antagonism Decreases disease severity (synovial hyper cellularity) [40]

Collagen-induced arthritis Mif -/- Suppression of collagen-induced arthritis/reduced
 cartilage damage

[41,68]

Mif -/- Mif -/- Regulation of leukocyte recruitment in the joint [69]

MIF, migration inhibitory factor; IgG2a, immunoglobulin G2a.
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may provide new therapeutic options for managing RA 
patients.
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